Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Pestic Biochem Physiol ; 201: 105874, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685243

RESUMO

In insects, chemosensory proteins (CSPs) play an important role in the perception of the external environment and have been widely used for protein-binding characterization. Riptortus pedestris has received increased attention as a potential cause of soybean staygreen syndrome in recent years. In this study, we found that RpedCSP4 expression in the antennae of adult R. pedestris increased with age, with no significant difference in expression level observed between males and females, as determined through quantitative real-time polymerase chain reaction (qRT-PCR). Subsequently, we investigated the ability of RpedCSP4 to bind various ligands (five aggregated pheromone components and 13 soybean volatiles) using a prokaryotic expression system and fluorescence competitive binding assays. We found that RpedCSP4 binds to three aggregated pheromone components of R. pedestris, namely, ((E)-2-hexenyl (Z)-3-hexenoate (E2Z3), (E)-2-hexenyl (E)-2-hexenoate (E2E2), and (E)-2-hexenyl hexenoate (E2HH)), and that its binding capacities are most stable under acidic condition. Finally, the structure and protein-ligand interactions of RpedCSP4 were further analyzed via homology modeling, molecular docking, and targeted mutagenesis experiments. The L29A mutant exhibited a loss of binding ability to these three aggregated pheromone components. Our results show that the olfactory function of RpedCSP4 provides new insights into the binding mechanism of RpedCSPs to aggregation pheromones and contributes to discover new target candidates that will provide a theoretical basis for future population control of R. pedestris.


Assuntos
Proteínas de Insetos , Feromônios , Animais , Feromônios/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/química , Masculino , Feminino , Ligação Proteica , Heterópteros/metabolismo , Heterópteros/genética
2.
ACS Appl Mater Interfaces ; 16(14): 18154-18163, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38547460

RESUMO

A strategy to manipulate droplets on the lubricated slippery surfaces using tribostatic electricity is proposed. By employing femtosecond laser-induced porous microstructures, we prepared a slippery surface with ultralow adhesion to various liquids. Electrostatic induction causes the charges within the droplet to be redistributed; thus, the droplet on the as-prepared slippery surfaces can be guided by electrostatic force under the electrostatic field, with controllable sliding direction and unlimited transport distance. The combination of electrostatic interaction and slippery surfaces allows us to manipulate droplets with a wide volume range (from 100 nL to 0.5 mL), charged droplets (including electrostatic attraction and repulsion), corrosive droplets, and even organic droplets with ultralow surface tension. In addition, droplets on tilted surfaces, curved surfaces, and inverted slippery surfaces can also be manipulated. Especially, the slippery surfaces can even allow the electrostatic interaction to manipulate alcohol with surface tension as low as 22.3 mN/m and liquid droplets suspended on a downward surface, which is not possible with reported superhydrophobic substrates. The features of slippery surfaces make the electrostatic manipulation successfully applied in versatile droplet manipulation, droplet patterning, chemical microreaction, transport of solid cargo, targeted delivery of chemicals, and liquid sorting.

3.
Nano Lett ; 24(10): 3176-3185, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38436575

RESUMO

Inspired by the reverse thrust generated by fuel injection, micromachines that are self-propelled by bubble ejection are developed, such as microrods, microtubes, and microspheres. However, controlling bubble ejection sites to build micromachines with programmable actuation and further enabling mechanical transmission remain challenging. Here, bubble-propelled mechanical microsystems are constructed by proposing a multimaterial femtosecond laser processing method, consisting of direct laser writing and selective laser metal reduction. The polymer frame of the microsystems is first printed, followed by the deposition of catalytic platinum into the desired local site of the microsystems by laser reduction. With this method, a variety of designable microrotors with selective bubble ejection sites are realized, which enable excellent mechanical transmission systems composed of single and multiple mechanical components, including a coupler, a crank slider, and a crank rocker system. We believe the presented bubble-propelled mechanical microsystems could be extended to applications in microrobotics, microfluidics, and microsensors.

4.
NeuroRehabilitation ; 54(3): 373-381, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38457158

RESUMO

BACKGROUND: Individuals with moderate to severe traumatic brain injury (msTBI) have reported a lack of motivation, lack of time, and fatigue as perceived barriers to exercise. OBJECTIVE: To evaluate the effects of an exercise program on self-reported health-related symptoms and quality of life in persons 45-years and older with msTBI. METHODS: Post-hoc analysis of a prospective community-based 12-week exercise program of 20 adults, age 45-80 years, with msTBI. Ten were in aerobic exercise training (AET) program and 10 in a stretching and toning (SAT) program. The AET group was instructed to exercise based on their estimated maximal heart rate (HR) for 150 minutes weekly. The SAT group was to stretch for the same target time without significantly increasing HR or level of exertion. Outcome measures were Traumatic Brain Injury Quality of Life (TBI-QOL) for global, cognitive, emotional, and social health, Patient Health Questionnaire-9 (PHQ-9) for depressive symptoms, and Pittsburgh Sleep Quality Index (PSQI) for sleep quality. RESULTS: AET was associated with improved self-reported cognitive health and sleep compared to SAT. Moderate to large, positive effect sizes were also observed in the AET group in the QOL categories of global, emotional, and social health, and depressive symptoms. CONCLUSIONS: This study offers preliminary evidence that AET may improve health-related QOL, especially for cognition and sleep, in middle-aged and older adults with msTBI.


Assuntos
Lesões Encefálicas Traumáticas , Terapia por Exercício , Qualidade de Vida , Autorrelato , Humanos , Qualidade de Vida/psicologia , Pessoa de Meia-Idade , Masculino , Feminino , Idoso , Lesões Encefálicas Traumáticas/psicologia , Lesões Encefálicas Traumáticas/reabilitação , Terapia por Exercício/métodos , Idoso de 80 Anos ou mais , Estudos Prospectivos , Exercício Físico/psicologia , Exercício Físico/fisiologia
5.
Nano Lett ; 24(8): 2671-2679, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38375804

RESUMO

The emerging two-photon polymerization (TPP) technique enables high-resolution printing of complex 3D structures, revolutionizing micro/nano additive manufacturing. Various fast scanning and parallel processing strategies have been proposed to promote its efficiency. However, obtaining large numbers of uniform focal spots for parallel high-speed scanning remains challenging, which hampers the realization of higher throughput. We report a TPP printing platform that combines galvanometric mirrors and liquid crystal on silicon spatial light modulator (LCoS-SLM). By setting the target light field at LCoS-SLM's diffraction center, sufficient energy is acquired to support simultaneous polymerization of over 400 foci. With fast scanning, the maximum printing speed achieves 1.49 × 108 voxels s-1, surpassing the existing scanning-based TPP methods while maintaining high printing resolution and flexibility. To demonstrate the processing capability, functional 3D microstructure arrays are rapidly fabricated and applied in micro-optics and micro-object manipulation. Our method may expand the prospects of TPP in large-scale micro/nanomanufacturing.

6.
Lab Chip ; 24(4): 832-842, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38235769

RESUMO

Magnetically-actuated microrobots (MARs) exhibit great potential in biomedicine owing to their precise navigation, wireless actuation and remote operation in confined space. However, most previously explored MARs unfold the drawback of hypodynamic magnetic torque due to low magnetic content, leading to their limited applications in controlled locomotion in fast-flowing fluid and massive cargo carrying to the target position. Here, we report a high-performance pure-nickel magnetically-actuated microrobot (Ni-MAR), prepared by a femtosecond laser polymerization followed by sintering method. Our Ni-MAR possesses a high magnetic content (∼90 wt%), thus resulting in enhanced magnetic torque under low-strength rotating magnetic fields, which enables the microrobot to exhibit high-speed swimming and superior cargo carrying. The maximum velocity of our Ni-MAR, 12.5 body lengths per second, outperforms the velocity of traditional helical MARs. The high-speed Ni-MAR is capable of maintaining controlled locomotion in fast-flowing fluid. Moreover, the Ni-MAR with massive cargo carrying capability can push a 200-times heavier microcube with translation and rotation motion. A single cell and multiple cells can be transported facilely by a single Ni-MAR to the target position. This work provides a scheme for fabricating high-performance magnetic microrobots, which holds great promise for targeted therapy and drug delivery in vivo.

7.
Biol Trace Elem Res ; 202(3): 1020-1030, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37326932

RESUMO

The aim of this study was to construct rat models of environmental risk factors for Kashin-Beck disease (KBD) with low selenium and T-2 toxin levels and to screen the differentially expressed genes (DEGs) between the rat models exposed to environmental risk factors. The Se-deficient (SD) group and T-2 toxin exposure (T-2) group were constructed. Knee joint samples were stained with hematoxylin-eosin, and cartilage tissue damage was observed. Illumina high-throughput sequencing technology was used to detect the gene expression profiles of the rat models in each group. Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment analysis were performed and five differential gene expression results were verified by quantitative real-time polymerase chain reaction (qRT‒PCR). A total of 124 DEGs were identified from the SD group, including 56 upregulated genes and 68 downregulated genes. A total of 135 DEGs were identified in the T-2 group, including 68 upregulated genes and 67 downregulated genes. The DEGs were significantly enriched in 4 KEGG pathways in the SD group and 9 KEGG pathways in the T-2 group. The expression levels of Dbp, Pc, Selenow, Rpl30, and Mt2A were consistent with the results of transcriptome sequencing by qRT‒PCR. The results of this study confirmed that there were some differences in DEGs between the SD group and the T-2 group and provided new evidence for further exploration of the etiology and pathogenesis of KBD.


Assuntos
Cartilagem Articular , Doença de Kashin-Bek , Selênio , Toxina T-2 , Ratos , Animais , Condrócitos/metabolismo , Selênio/metabolismo , Toxina T-2/toxicidade , Cartilagem Articular/metabolismo , Articulação do Joelho/metabolismo , Doença de Kashin-Bek/metabolismo
8.
Nutrients ; 15(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38140286

RESUMO

The aim of this study was to analyze the differences in gut microbiota between selenium deficiency and T-2 toxin intervention rats. Knee joint and fecal samples of rats were collected. The pathological characteristics of knee cartilage were observed by safranin O/fast green staining. DNA was extracted from fecal samples for PCR amplification, and 16S rDNA sequencing was performed to compare the gut microbiota of rats. At the phylum level, Firmicutes (81.39% vs. 77.06%) and Bacteroidetes (11.11% vs. 14.85%) were dominant in the Se-deficient (SD) group and T-2 exposure (T-2) groups. At the genus level, the relative abundance of Ruminococcus_1 (12.62%) and Ruminococcaceae_UCG-005 (10.31%) in the SD group were higher. In the T-2 group, the relative abundance of Lactobacillus (11.71%) and Ruminococcaceae_UCG-005 (9.26%) were higher. At the species level, the high-quality bacteria in the SD group was Ruminococcus_1_unclassified, and Ruminococcaceae_UCG-005_unclassified in the T-2 group. Lactobacillus_sp__L_YJ and Lactobacillus_crispatus were the most significant biomarkers in the T-2 group. This study analyzed the different compositions of gut microbiota in rats induced by selenium deficiency and T-2 toxin, and revealed the changes in gut microbiota, so as to provide a certain basis for promoting the study of the pathogenesis of Kashin-Beck disease (KBD).


Assuntos
Microbioma Gastrointestinal , Desnutrição , Selênio , Toxina T-2 , Ratos , Animais , Ratos Sprague-Dawley , Toxina T-2/toxicidade , Cartilagem
9.
Biofactors ; 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38156801

RESUMO

Kashin-Beck disease (KBD) is an endemic, chronic degenerative joint disease in China. Exosomes miRNAs, as signaling molecules in intercellular communication, can transfer specific biological martials into target cell to regulate their function and might participate in the pathogenesis of KBD. We isolated serum and chondrocytes-derived exosomes, miRNA sequencing revealed exosomes miRNA profiles and differentially expressed miRNAs (DE-miRNAs) were identified. The target genes were predicted of known and novel DE-miRNAs with TargetScan 5.0 and miRanda 3.3a database. Single-cell RNA sequencing (scRNA-seq) was performed to identify chondrocyte clusters and their gene signatures in KBD. And we performed comparative analysis between the serum and chondrocytes-derived exosomes DE-miRNA target genes and differentially expressed genes of each cell clusters. A total of 20 DE-miRNAs were identified in serum-derived exosomes. In the miRNA expression of chondrocytes-derived exosomes, 53 DE-miRNAs were identified. 16,063 predicted targets were identified as the target genes in the serum-derived exosomes, 57,316 predicted targets were identified as the target genes in the chondrocytes-derived exosomes. Seven clusters were labeled by cell type according to the expression of previously described markers. Three hundred fifteen common genes were found among serum/chondrocytes-derived exosomes DE-miRNA target genes and DEGs identified by scRNA-seq analysis. We firstly integratly analyzed the serum and chondrocytes exosomes miRNA with single-cell RNA sequencing (scRNA-seq) data of KBD chondrocyte, the results showed that DE-miRNAs in exosomes might play a potential role in regulating genes expression in different KBD chondrocytes clusters by exosomes mediating cell-cell communications functions, which could improve the new diagnosis and treatment methods for KBD.

10.
Arch Biochem Biophys ; 748: 109785, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37844826

RESUMO

Extracellular vesicular miRNAs (EV-miRNAs) play essential roles as intercellular communication molecules in knee Osteoarthritis (OA). We isolated cartilage-derived extracellular vesicles (EVs), to perform miRNA sequencing, which revealed EV-miRNA profiles and identified differentially expressed miRNAs (DE-miRNAs) between cartilage injury and cartilage non-injury groups. The target genes of known and novel DE-miRNAs were predicted with multiMiR package in 14 miRNA-target interaction databases. Meanwhile, single-cell RNA sequencing (scRNA-seq) was performed to identify chondrocyte clusters and their gene signatures in knee OA. Then we performed comparative analysis between target genes of the cartilage-derived EV-DE-miRNAs target genes and cluster-specific maker genes of characteristic chondrocyte clusters. Finally, the functional analysis of the cartilage-derived EVs DE-miRNA target genes and cluster-specific marker genes of each cell population were performed. The EV-miRNA profile analysis identified 13 DE-miRNAs and 7638 target genes. ScRNA-seq labelled seven clusters by cell type according to the expression of multiple characteristic markers. The results identified 735, 184, 303 and 879 common genes between EV-DE-miRNA target genes and cluster-specific marker genes in regulatory chondrocytes (RegCs), fibrocartilage chondrocytes (FC), prehypertrophic chondrocytes (PreHTCs) and mitochondrial chondrocytes (MTC), respectively. We firstly integrated the association between the cartilage-derived EV-DE-miRNA target genes and distinguished cluster-specific marker genes of each chondrocyte clusters. KEGG pathway analysis further identified that the DE-miRNAs target genes were significantly enriched in MAPK signaling pathway, Focal adhesion and FoxO signaling pathway. Our results provided some new insights into cartilage injury and knee OA pathogenesis which could improve the new diagnosis and treatment methods for OA.


Assuntos
Cartilagem Articular , Vesículas Extracelulares , MicroRNAs , Osteoartrite do Joelho , Humanos , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Análise da Expressão Gênica de Célula Única , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Vesículas Extracelulares/metabolismo
11.
J Zhejiang Univ Sci B ; 24(9): 796-806, 2023.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37701956

RESUMO

Oral squamous cell carcinoma (OSCC), a common malignancy of the head and neck, ranks sixth worldwide in terms of cancers with the most negative impact, owing to tumor relapse rates, cervical lymphnode metastasis, and the lack of an efficacious systemic therapy. Its prognosis is poor, and its mortality rate is high. Octamer-binding transcription factor 4 (OCT4) is a member of the Pit-Oct-Unc (POU) family and is a key reprogramming factor that produces a marked effect in preserving the pluripotency and self-renewal state of embryonic stem cells (ESCs). According to recent studies, OCT4 participates in retaining the survival of OSCC cancer stem cells (CSCs), which has far-reaching implications for the occurrence, recurrence, metastasis, and prognosis of oral carcinogenesis. Therefore, we summarize the structure, subtypes, and function of OCT4 as well as its role in the occurrence, progression, and prognosis of OSCC.

12.
Pestic Biochem Physiol ; 194: 105513, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532328

RESUMO

Riptortus pedestris (bean bug), a common soybean pest, has a highly developed olfactory system to find hosts for feeding and oviposition. Chemosensory proteins (CSPs) have been identified in many insect species; however, their functions in R. pedestris remain unknown. In this study, quantitative real time-polymerase chain reaction (qRT-PCR) revealed that the expression of RpedCSP12 in the adult antennae of R. pedestris increased with age. Moreover, a significant difference in the expression levels of RpedCSP12 was observed between male and female antennae at one and three days of age. We also investigated the binding ability of RpedCSP12 to different ligands using a prokaryotic expression system and fluorescence competitive binding assays. We found that RpedCSP12 only bound to one aggregation pheromone, (E)-2-hexenyl (Z)-3-hexenoate, and its binding decreased with increasing pH. Furthermore, homology modelling, molecular docking, and site-directed mutagenesis revealed that the Y27A, L74A, and L85A mutants lost their binding ability to (E)-2-hexenyl (Z)-3-hexenoate. Our findings highlight the olfactory roles of RpedCSP12, providing insights into the mechanism by which RpedCSPs bind to aggregation pheromones. Therefore, our study can be used as a theoretical basis for the population control of R. pedestris in the future.


Assuntos
Heterópteros , Feromônios , Animais , Feminino , Simulação de Acoplamento Molecular , Heterópteros/genética , Glycine max
13.
J Agric Food Chem ; 71(34): 12668-12677, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37590199

RESUMO

Seed predation by insect herbivores reduces crop production worldwide. Foraging on seeds at pre-dispersal generally means that females need to find the suitable host plant within a relatively short timeframe in order to synchronize larval development with seed production. The mechanistic understanding of host finding by seed pests can be harnessed for more sustainable pest management strategies. We here studied the chemical communication between the bean bug Riptortus pedestris, a major pest of legumes, and several crop species and cultivars in the Fabaceae. Via a comparative chemical analysis, we found that 1-octen-3-ol is the principal constituent of the floral scents of most species tested in the subfamily Faboideae, including soybean and faba bean. With field trapping and laboratory bioassays, including electroantennography, we further revealed that this compound can be perceived, and stimulate attraction responses, by R. pedestris nymphs and adults. The addition of 1-octen-3-ol to pheromone traps might therefore improve trapping efficacy for controlling populations of this important granivore pest on legumes.


Assuntos
Fabaceae , Odorantes , Verduras , Sementes , Feromônios
14.
Curr Drug Metab ; 24(5): 315-326, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37264665

RESUMO

Nucleic acid strands can be synthesized into various nucleic acid-based nanomaterials (NANs) through strict base pairing. The self-assembled NANs are programmable, intelligent, biocompatible, non-immunogenic, and non-cytotoxic. With the rapid development of nanotechnology, the application of NANs in the biomedical fields, such as drug delivery and biological sensing, has attracted wide attention. However, the stability of NANs is often affected by the cation concentrations, enzymatic degradation, and organic solvents. This susceptibility to degradation is one of the most important factors that have restricted the application of NANs. NANs can be denatured or degraded under conditions of low cation concentrations, enzymatic presence, and organic solvents. To deal with this issue, a lot of methods have been attempted to improve the stability of NANs, including artificial nucleic acids, modification with specific groups, encapsulation with protective structures, etc. In this review, we summarized the relevant methods to have a deeper understanding of the stability of NANs.


Assuntos
Nanoestruturas , Ácidos Nucleicos , Humanos , Nanoestruturas/química , Nanotecnologia , Cátions
15.
Front Microbiol ; 14: 1153424, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37250055

RESUMO

Introduction: Osteoarthritis (OA) is a kind of chronic, degenerative disorder with unknown causes. In this study, we aimed to improve our understanding of the gut microbiota profile in patients with knee OA. Methods: 16S rDNA gene sequencing was performed to detect the gut microbiota in fecal samples collected from the patients with OA (n = 32) and normal control (NC, n = 57). Then the metagenomic sequencing was used to identify the genes or functions linked with gut microbial changes at the species level in the fecal samples from patients with OA and NC groups. Results: The Proteobacteria was identified as dominant bacteria in OA group. We identified 81 genera resulted significantly different in abundance between OA and NC. The abundance of Agathobacter, Ruminococcus, Roseburia, Subdoligranulum, and Lactobacillus showed significant decrease in the OA compared to the NC. The abundance of genera Prevotella_7, Clostridium, Flavonifractor and Klebsiella were increasing in the OA group, and the families Lactobacillaceae, Christensenellaceae, Clostridiaceae_1 and Acidaminococcaceae were increasing in the NC. The metagenomic sequencing showed that the abundance of Bacteroides stercoris, Bacteroides vulgatus and Bacteroides uniformis at the species level were significantly decreasing in the OA, and the abundance of Escherichia coli, Klebsiella pneumoniae, Shigella flexneri and Streptococcus salivarius were significantly increased in OA. Discussion: The results of our study interpret a comprehensive profile of the gut microbiota in patients with knee OA and offer the evidence that the cartilage-gut-microbiome axis could play a crucial role in underlying the mechanisms and pathogenesis of OA.

16.
ACS Nano ; 17(10): 9025-9038, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37134316

RESUMO

The highly aligned extracellular matrix of metastatic breast cancer cells is considered to be the "highway" of cancer invasion, which strongly promotes the directional migration of cancer cells to break through the basement membrane. However, how the reorganized extracellular matrix regulates cancer cell migration remains unknown. Here, a single exposure of a femtosecond Airy beam followed by a capillary-assisted self-assembly process was used to fabricate a microclaw-array, which was used to mimic the highly oriented extracellular matrix of tumor cells and the pores in the matrix or basement membrane during cell invasion. Through the experiment, we found that metastatic breast cancer MDA-MB-231 cells and normal breast epithelial MCF-10A cells exhibit three major migration phenotypes on microclaw-array assembled with different lateral spacings: guidance, impasse, and penetration, whereas guided and penetrating migration are almost completely arrested in noninvasive MCF-7 cells. In addition, different mammary breast epithelial cells differ in their ability to spontaneously perceive and respond to the topology of the extracellular matrix at the subcellular and molecular levels, which ultimately affects the cell migratory phenotype and pathfinding. Altogether, we fabricated a microclaw-array as a flexible and high-throughput tool to mimic the extracellular matrix during invasion to study the migratory plasticity of cancer cells.


Assuntos
Neoplasias da Mama , Células Epiteliais , Humanos , Feminino , Células MCF-7 , Células Epiteliais/metabolismo , Fenótipo , Carmustina/metabolismo , Movimento Celular/fisiologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Invasividade Neoplásica
17.
Food Funct ; 14(10): 4647-4661, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37102320

RESUMO

Parkinson's disease (PD) is a tricky neurodegenerative disease characterized with motor deficits and gastrointestinal (GI) dysfunction. Gut microbiota disturbance is reported to be involved in the clinical phenotypes of PD and its pathogenesis through the brain-gut-microbiota axis. Resveratrol is a natural polyphenol that possesses various biological activities in alleviating many diseases, including PD. The present study was aimed to investigate the role of gut microbiota in resveratrol-treated PD mice. A chronic mouse model of PD was generated via the injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and probenecid (MPTP/P) for 5 consecutive weeks. Resveratrol was orally administered once a day (30 mg kg-1 d-1) for a total of 8 weeks. From the 6th week to the 8th week, fecal microbiota transplantation (FMT) was performed from resveratrol-treated PD mice to PD mice to evaluate the contribution of resveratrol-shaped microbiota in the alleviation of PD. The results showed that FMT from resveratrol-shaped microbiota remarkably alleviated the mice phenotype from PD progression, including increased latency in the rotarod, shortened beam walking time, increased the number of tyrosine hydroxylase (TH)-positive cells in the substantia nigra pars compacta (SNpc) and enriched TH-positive fiber density in the striatum. Further experiments revealed that FMT could ameliorate the GI dysfunction by increasing the small intestinal transport rate and the colon length, decreasing the relative abundances of inflammatory cytokines (TNF-α, IL-6 and IL-1ß) in colon epithelial tissue. The 16S rDNA sequencing indicated that FMT attenuated the gut microbial dysbiosis in PD mice by increasing the abundances of Prevotellaceae, Rikenellaceae, Erysipelotrichaceae, Blautia and Alistipes, lowering the ratio of Fimicutes/Bacteroidetes, and decreasing the abundances of Lachnospiraceae and Akkermansia. Therefore, results in this study demonstrated that gut microbiota played a vital role in the prevention of PD progression, and the shaping of the gut microbiota was the pharmacological mechanism of resveratrol in alleviating the phenotype of Parkinson's disease in PD mice.


Assuntos
Microbioma Gastrointestinal , Doenças Neurodegenerativas , Doença de Parkinson , Animais , Camundongos , Doença de Parkinson/tratamento farmacológico , Resveratrol/uso terapêutico , Tirosina 3-Mono-Oxigenase , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina
18.
Front Cell Dev Biol ; 11: 1083904, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875769

RESUMO

Background: Kashin-Beck disease (KBD) is a deformed osteochondral disease with a chronic progression that is restrictively distributed in eastern Siberia, North Korea, and some areas of China, and selenium deficiency has been identified as an important factor in the pathogenesis of this disease in recent years. Objective: The aim of this study is to investigate the selenoprotein transcriptome in chondrocytes and define the contribution of selenoprotein to KBD pathogenesis. Methods: Three cartilage samples were collected from the lateral tibial plateau of adult KBD patients and normal controls paired by age and sex for real-time quantitative polymerase chain reaction (RT-qPCR) to detect the mRNA expression of 25 selenoprotein genes in chondrocytes. Six other samples were collected from adult KBD patients and normal controls. In addition, immunohistochemistry was used on four adolescent KBD samples and seven normal controls (IHC) to determine the expression of proteins screened by RT-qPCR results that had different gene levels. Results: Increased mRNA expression of GPX1 and GPX3 was observed in chondrocytes, and stronger positive staining was displayed in the cartilage from both adult and adolescent patients. The mRNA levels of DIO1, DIO2, and DIO3 were increased in KBD chondrocytes; however, the percentage of positive staining decreased in the KBD cartilage of adults. Conclusion: The selenoprotein transcriptome, mainly the glutathione peroxidase (GPX) and deiodinase (DIO) families were altered in KBD and might play a vital role in the pathogenesis of KBD.

19.
Nano Lett ; 23(6): 2304-2311, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36880306

RESUMO

Vortex beams, which intrinsically possess optical orbital angular momentum (OAM), are considered as one of the promising chiral light waves for classical optical communications and quantum information processing. For a long time, it has been an expectation to utilize artificial three-dimensional (3D) chiral metamaterials to manipulate the transmission of vortex beams for practical optical display applications. Here, we demonstrate the concept of selective transmission management of vortex beams with opposite OAM modes assisted by the designed 3D chiral metahelices. Utilizing the integrated array of the metahelices, a series of optical operations, including display, hiding, and even encryption, can be realized by the parallel processing of multiple vortex beams. The results open up an intriguing route for metamaterial-dominated optical OAM processing, which fosters the development of photonic angular momentum engineering and high-security optical encryption.

20.
Mol Omics ; 19(2): 137-149, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36508252

RESUMO

Kashin-Beck disease (KBD) is a serious, endemic chronic osteochondral disease characterized by symmetrical enlargement of the phalanges, brachydactyly, joint deformity, and even dwarfism. To investigate the urinary metabolomic profiles of KBD patients, we performed an untargeted metabolomics approach using liquid chromatography coupled with mass spectrometry (LC-MS). Adult urinary specimens were collected from 39 patients with KBD and 19 healthy subjects; the children's urinary specimens were collected from 5 patients with KBD, 25 suspected KBD cases and 123 healthy subjects in the KBD endemic area during a three consecutive year study. We identified 10 upregulated and 28 downregulated secondary level metabolites highly associated with aetiology and pathogenesis of KBD between adult KBD and adult controls. A total of 163, 967 and 795 metabolites were significantly different in the urine among children with KBD, suspected children with KBD cases and healthy child controls, respectively, for each year in three consecutive years. HT-2 toxin, Se-adenosylselenomethionine (AdoSeMet), the toxin T2 tetrol, and many kinds of amino acids were identified as differential metabolites in this study. Amino sugar and nucleotide sugar metabolism, fructose and mannose metabolism, arachidonic acid metabolism, D-glutamine and D-glutamate metabolism, ubiquinone and other terpenoid-quinone biosynthesis, and D-glutamine and D-glutamate metabolism were perturbed pathways in adult and child KBD patients. Our study provides new insight into the underlying mechanisms of KBD, and suggests that we should pay more attention to these differences in small-molecule metabolites and metabolic pathways in the environmental aetiology and pathogenesis of KBD.


Assuntos
Doença de Kashin-Bek , Criança , Humanos , Doença de Kashin-Bek/epidemiologia , Doença de Kashin-Bek/metabolismo , Ácido Glutâmico , Glutamina , Metabolômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA