Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 905: 167378, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37758151

RESUMO

It has been recently demonstrated that free DNA tracers have the potential in tracing water flow and contaminant transport through the vadose zone. However, whether the free DNA tracer can be used in flood irrigation area to track water flow and solute/contaminant transport is still unclear. To reveal the infiltration process and retention mechanisms of surface applied free DNA tracer through soil under flood irrigation, we tested the fate and transport behavior of surface applied free DNA tracers through packed saturated sandy soil columns with a 10 cm water head mimicking flood irrigation. From the experimental breakthrough curves and by fitting a two-site kinetic sorption model (R2 = 0.83-0.91 and NSE = 0.79-0.89), adsorption/desorption rates could be obtained and tracer retention profiles could be simulated. Together these results revealed that 1) the adsorption of free DNA was dominantly to clay particles in the soil, which took up 1.96 % by volume, but took up >97.5 % by surface area and densely cover the surface of sand particles; and 2) at a pore water pH of 8.0, excluding the 4.9 % passing through and 3.1 % degradation amount, the main retention mechanisms in the experimental soil were ligand exchange (42.0 %), Van der Waals interactions (mainly hydrogen bonds), electrostatic forces and straining (together 44.7 %), and cation bridge (5.3 %). To our knowledge, this study is the first to quantify the contribution of each of the main retention mechanisms of free synthetic DNA tracers passing through soil. Our findings could facilitate the application of free DNA tracer to trace vadose zone water flow and solute/contaminant transport under flood irrigation and other infiltration conditions.


Assuntos
Poluentes do Solo , Solo , Solo/química , Inundações , Argila , Poluentes do Solo/análise , Água , Areia
2.
Sci Total Environ ; 892: 164397, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37247732

RESUMO

As a tree species of shelterbelts, Populus popularis maintains significant ecological functions in arid and semiarid areas. However, stand transpiration (T) and canopy conductance (gc) dynamics of P. popularis are unclear in arid irrigated areas with shallow groundwater fluctuations. To better understand the responses of T and gc to meteorological factors, soil water, and shallow groundwater in arid areas, we observed the environmental conditions and sap flow of P. popularis, and quantified T and gc in three growing seasons of 2018-2020 in a typical arid area of China. Results showed T and gc ranged from 0.18 to 6.11 mm day-1 and 2.26-12.54 mm s-1 in 2018-2020, respectively. Solar radiation and vapor pressure deficit (VPD) were major drivers of T at daily scales. It was consistently found that T exponentially decreased with increasing groundwater table depth (GTD) and decreasing reference evapotranspiration in three years. gc is primarily influenced by VPD and is positively related to soil water content in 0-30 cm soil layer (SWC0-30 cm). Moreover, low SWC0-30 cm and deepening GTD jointly decreased T and gc by 22.45 % and 30.41 %, respectively. The response of gc to VPD was susceptible to groundwater fluctuations, and the synergistic influences of VPD and GTD on gc could be well described by the logarithmic function, especially in 2019. The sensitivity of gc to VPD and its variations under different environmental conditions suggested that a flexible stomatal regulation of transpiration occurred in the observed P. popularis with the arid climate and shallow groundwater. These findings provided the essential basis for the water use strategy of P. popularis and stand water resources management in arid regions.


Assuntos
Populus , Água , Água/fisiologia , Populus/fisiologia , Transpiração Vegetal/fisiologia , Solo , Estações do Ano , Árvores/fisiologia
3.
Water Res ; 223: 119009, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36037713

RESUMO

Although multiple experimental studies have proven the use of free synthetic DNA as tracers in hydrological systems, their quantitative fate and transport, especially through the vadose zone, is still not well understood. Here we simulate the water flow and breakthrough of deuterium (D) and one free synthetic DNA tracer from a 10-day experiment conducted in a transient variably saturated 1m3 10° sloped lysimeter using the HYDRUS-2D software package. Recovery and breakthrough flux of D (97.78%) and the DNA tracer (1.05%) were captured well with the advection-dispersion equation (R2 = 0.949, NSE = 0.937) and the Schijven and Simunek two-site kinetic sorption model recommended for virus transport modeling (R2 = 0.824, NSE = 0.823), respectively. The degradation of the DNA tracer was very slow (estimated to be 10% in 10 days), because the "loamy sand" porous media in our lysimeter was freshly crushed basaltic tephra (i.e., crushed rocks) and the microbes and DNase that could potentially degrade DNA in regular soils were rare in our "loamy sand". The timing of the concentration peaks and the HYDRUS-2D simulated temporal and spatial distribution of DNA in the lysimeter both revealed the role of the solid-water-air contact lines in mobilizing and carrying DNA tracer under the experimental variably saturated transient flow condition. The free DNA was nearly non-selectively transported through the porous media, and showed a slightly early breakthrough, possibly due to a slight effect of anion exclusion or size exclusion. Our results indicate that free DNA have the potential to trace vadose zone water flow and solute/contaminant transport, and to serve as surrogates to trace viral pathogen pollution in soil-water systems. To our knowledge, this study is the first to simulate transport mechanisms of free synthetic DNA tracers through real soil textured porous media under variably saturated transient flow condition.


Assuntos
Água Subterrânea , Movimentos da Água , Desoxirribonucleases , Deutério , Modelos Teóricos , Areia , Solo , Água
4.
Environ Sci Pollut Res Int ; 27(17): 21533-21541, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32279264

RESUMO

Microcystis aeruginosa is one of the most common algae found in eutrophicated water bodies. Alkaline phosphatase (AKP) can be produced by Microcystis aeruginosa to utilize organic phosphates under phosphorus deficiency stress, thereby AKP can be regarded as an important indicator for algal growth. Sulfur compounds are ubiquitous in waters, while investigation on the interactions between sulfur compounds and Microcystis aeruginosa is limited. In this work, we introduced 33 types of sulfur compounds to culture Microcystis aeruginosa, and the results demonstrated that algal growth is positively related to AKP activities. Toxicity of organic sulfur compounds was further evaluated using Toxicity Estimation Software Tool based on quantitative structure-activity relationship prediction. The algal growth results exhibited strong correlation to the toxicity endpoints suggesting the organic sulfur compounds inhibits the algal growth as toxic matters. K-means cluster analyses have been carried out subsequently via Python based on the results of algal growth and AKP activities of each sample and statistically, the sulfur compounds can be adequately clustered into 2 groups. According to clustering results, sulfonic acids exhibit low toxicity while sulfur amino acids can be considered as more toxic compounds. Graphical abstract Varied sulfur compounds (33 types) were investigated to find out the interactions between them and Microcystis aeruginosa, a common alga. K-means cluster and correlation analyses demonstrate that algal growth and alkaline phosphatase activities exhibited strong correlation to the predicted toxicity endpoints.


Assuntos
Microcystis , Fosfatase Alcalina , Fósforo , Compostos de Enxofre
5.
Sci Total Environ ; 669: 512-526, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30884273

RESUMO

The application of pesticides in agriculture is a widely-used way to alleviate pest stresses. However, it also introduces various environmental concerns due to the offsite movement of pesticide residues towards receiving water bodies. While the application of process-based modeling approaches can provide quantitative information on pesticide exposure, there are nonetheless growing requirements for model development and improvement to better represent various hydrological and physico-chemical conditions at watershed scale, and for better model integration to address environmental, ecological and economic concerns. The Soil and Water Assessment Tool (SWAT) is an ecohydrological model used in over 3000 published studies, including about 50 for simulating pesticide fate and transport at the watershed scale. To better understand its strengths and limitations, we conducted a rigorous review of published studies that have used SWAT for pesticide modeling. This review provides recommendations for improving the interior algorithms (fate simulation, pathway representation, transport/pollution control, and other hydrological related improvement) to better represent natural conditions, and for further extension of pesticide exposure modeling using SWAT by linking it with other models or management tools to effectively address the various concerns of environmental researchers and local decision makers. Going beyond past studies, we also recommend future improvement to fill research gaps in developing modularized field level simulation, improved BMPs, new in-pond and in-stream modules, and the incorporation of soft data. Our review pointed out a new insight of pesticide fate and transport modeling at watershed level, which should be seen as steps leading to the direction for model development, as well as better addressing management concerns of local stakeholders for model implementation.

6.
Sci Total Environ ; 635: 1426-1435, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29710595

RESUMO

Escherichia coli (E. coli) level in streams is a public health indicator. Therefore, being able to explain why E. coli levels are sometimes high and sometimes low is important. Using citizen science data from Fall Creek in central NY we found that complementarily using principal component analysis (PCA) and partial least squares (PLS) regression provided insights into the drivers of E. coli and a mechanism for predicting E. coli levels, respectively. We found that stormwater, temperature/season and shallow subsurface flow are the three dominant processes driving the fate and transport of E. coli. PLS regression modeling provided very good predictions under stormwater conditions (R2 = 0.85 for log (E. coli concentration) and R2 = 0.90 for log (E. coli loading)); predictions under baseflow conditions were less robust. But, in our case, both E. coli concentration and E. coli loading were significantly higher under stormwater condition, so it is probably more important to predict high-flow E. coli hazards than low-flow conditions. Besides previously reported good indicators of in-stream E. coli level, nitrate-/nitrite-nitrogen and soluble reactive phosphorus were also found to be good indicators of in-stream E. coli levels. These findings suggest management practices to reduce E. coli concentrations and loads in-streams and, eventually, reduce the risk of waterborne disease outbreak.


Assuntos
Monitoramento Ambiental , Escherichia coli , Rios/microbiologia , Microbiologia da Água , Nitratos/análise , Nitrogênio/análise , Fósforo/análise , Rios/química
7.
J Colloid Interface Sci ; 526: 207-219, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29734088

RESUMO

Poly(lactic-co-glycolic acid) (PLGA) particle carriers of synthetic DNA have recently received increased attention for environmental applications due to their biodegradability, customizability, and nearly limitless number of uniquely identifiable "labels". In this paper, we present methodologies for the preparation of DNA-labeled particles, control of particle size, extraction of DNA-labels, and analysis via quantitative polymerase chain reaction (qPCR). Characterization and analysis of the DNA-labeled particles reveal spherical particles of diameters ranging from 60 to 1000 nm, with consistent zeta potentials around -45 mV, that are stable to aggregation, even in the presence of concentrated mono- and divalent cations. A highly correlated and consistent relationship between particle concentration and DNA-label count was observed, with a detection range spanning 7 orders of magnitude, from 0.01 to 10,000 mg/L (10-107 particles/µL). The results of two environmental applications of the DNA-labeled particles are also presented, highlighting their feasibility for use in environmental studies. Whether exploring size-dependent transport phenomena or identifying potential pathogen transport pathways, the DNA-labeled particle approach presented here provides a powerful tool for the identification of overlapping particle signals at a range of concentrations.


Assuntos
DNA/química , Ácido Láctico/química , Ácido Poliglicólico/química , Reação em Cadeia da Polimerase em Tempo Real , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA