Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.170
Filtrar
1.
J Environ Sci (China) ; 150: 349-361, 2025 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39306410

RESUMO

The capability of traditional ligand in countering rapid passivation on nanoscale zero-valent iron (nZVI) surface is inadequate, and the precise electron transfer mechanism remains elusive. In this study, we reported that myo-inositol hexakisphosphate (IHP), a redox-inactive organophosphorus in soil, could highly enhance Cr(VI) reduction and immobilization in comparison with typical ligands (TPP, EDTA, oxalate and phosphate). And the effects of IHP concentration, Cr(VI) concentration and initial pH were systematically investigated. Cr K-edge XANES and XPS analysis revealed that Cr(III) was the exclusive form in solid products regardless of IHP existence. Results of ATR-FTIR and FESEM inferred that IHP was adsorbed on nZVI surface via inner-sphere complexation, thus averting encapsulation of [Fe, Cr](OH)3 coprecipitate and impeding solid particles agglomeration. Additionally, IHP expedited the production of surface-bound Fe(II), primarily attributable to the interaction between nZVI and oxygen. These surface-bound Fe(II) species played a pivotal role in Cr(VI) reduction. Electrochemical analysis unveiled that IHP lowered redox potential of Fe(III)/Fe(II), thereby facilitating reaction between Fe(II) and Cr(VI), whereas inhibited direct electron transfer from nZVI core to Cr(VI). Our findings proposed a novel potential ligand for alleviating nZVI passivation in Cr(VI) removal and deepened our understanding in the process of electron transfer.


Assuntos
Cromo , Ferro , Cromo/química , Ferro/química , Ácido Fítico/química , Oxirredução , Modelos Químicos , Transporte de Elétrons , Poluentes do Solo/química , Adsorção
2.
Biomaterials ; 313: 122803, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39232334

RESUMO

Bacteria-infected wounds pose challenges to healing due to persistent infection and associated damage to nerves and vessels. Although sonodynamic therapy can help kill bacteria, it is limited by the residual oxidative stress, resulting in prolonged inflammation. To tackle these barriers, novel 4 octyl itaconate-coated Li-doped ZnO/PLLA piezoelectric composite microfibers are developed, offering a whole-course "targeted" treatment under ultrasound therapy. The inclusion of Li atoms causes the ZnO lattice distortion and increases the band gap, enhancing the piezoelectric and sonocatalytic properties of the composite microfibers, collaborated by an aligned PLLA conformation design. During the infection and inflammation stages, the piezoelectric microfibers exhibit spatiotemporal-dependent therapeutic effects, swiftly eliminating over 94.2 % of S. aureus within 15 min under sonodynamic therapy. Following this phase, the microfibers capture reactive oxygen species and aid macrophage reprogramming, restoring mitochondrial function, achieving homeostasis, and shortening inflammation cycles. As the wound progresses through the healing stages, bioactive Zn2+ and Li + ions are continuously released, improving cell recruitment, and the piezoelectrical stimulation enhances wound recovery with neuro-vascularization. Compared to commercially available dressings, our microfibers accelerate the closure of rat wounds (Φ = 15 mm) without scarring in 12 days. Overall, this "one stone, four birds" wound management strategy presents a promising avenue for infected wound therapy.


Assuntos
Terapia por Ultrassom , Cicatrização , Animais , Cicatrização/efeitos dos fármacos , Terapia por Ultrassom/métodos , Ratos Sprague-Dawley , Ratos , Staphylococcus aureus/efeitos dos fármacos , Óxido de Zinco/química , Camundongos , Estimulação Elétrica , Masculino , Infecções Estafilocócicas/terapia , Poliésteres/química , Espécies Reativas de Oxigênio/metabolismo , Terapia por Estimulação Elétrica/métodos , Neovascularização Fisiológica/efeitos dos fármacos
3.
J Gastrointest Surg ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39299452

RESUMO

BACKGROUND: Endoscopic submucosal dissection (ESD) is a preferred method for early esophageal cancer, yet its application to esophageal adenocarcinoma (EAC), especially in the Eastern population with its relative rarity, lacks sufficient literature. This study evaluates ESD's long-term outcomes for EAC, focusing on non-curative resections and diagnostic accuracy. METHODS: A retrospective study (2012-2022) included 68 patients undergoing ESD for early EAC at Jiangsu Province Hospital. Primary outcomes encompassed ESD efficacy, en bloc resection, R0 resection, curative resection rates, and follow-up. Secondary outcomes involved non-curative ESD, T1a/T1b stage comparison, and diagnostic consistency. RESULTS: Postoperative staging revealed T1a (n=53) and T1b (n=15) tumors. En bloc resection rate was 97.1%, R0 resection rate was 79.4%, and non-curative rate was 30.9%. T1a had significantly higher R0 rate and curative resection rate. Among non-curative ESDs, 33.3% underwent esophagectomy, 42.9% had surveillance endoscopies, 19.1% repeated curative ESD, and 4.7% were lost to follow-up. Average follow-up was 63.76±28.47 months. Six cases had recurrence, three had residual lesions, and six deaths occurred, unrelated to ESD. No significant difference in survival or recurrence rates between curative and non-curative ESD groups was observed. ESD led to a histologic diagnosis change in 70.6% of cases, all upstaged. CONCLUSIONS: ESD is effective for EAC, with higher curative rates for T1a than T1b. Non-curative ESD cases may benefit from conservative approaches. Long-term follow-up underscores poor consistency between residual lesions and positive margins. ESD serves as a valuable diagnostic staging tool, particularly for T1b patients, considering the low accuracy of EUS and preoperative biopsy.

4.
Adv Mater ; : e2411004, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39300904

RESUMO

Aqueous Zn battery is promising for grid-level energy storage due to its high safety and low cost, but dendrite growth and side reactions at the Zn metal anode hinder its development. Designing Zn with (002) orientation improves the stability of the Zn anode, yet grain boundaries remain susceptible to corrosion and dendrite growth. Addressing these intergranular issues is crucial for enhancing the electrochemical performance of (002)-textured Zn. Here, a strategy based on grain boundary wetting to fill intergranular regions and mitigate these issues is reported. By systematically investigating boundary fillers and filling conditions, In metal is chosen as the filler, and one-step annealing is used to synergistically convert commercial Zn foils into single (002)-textured Zn while filling In into the boundaries. The inter-crystalline-modified (002)-textured Zn (IM(002) Zn) effectively inhibits corrosion and dendrite growth, resulting in excellent stability in batteries. This work offers new insights into Zn anode protection and the development of high-energy Zn batteries.

5.
Int J Biol Macromol ; 280(Pt 2): 135889, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39307497

RESUMO

The basic leucine zipper (bZIP) transcription factors play a critical role in various plant biological processes, including anthocyanin biosynthesis. This study focuses on Rhododendron simsii, a notable ornamental species with insufficiently explored bZIP transcription factors. We identified 66 bZIP transcription factors in the R. simsii genome and conducted comprehensive bioinformatics analyses to determine their gene localization, phylogenetic relationships, grouping, gene/protein structure, duplication events, synteny, and expression profiles. Our analysis identified RsbZIP6, a homolog of HY5 known to influence anthocyanin biosynthesis in many plants, as a potential regulator of this pathway. We cloned the complete coding sequence of RsbZIP6, which encodes a 170-amino acid protein spanning 510 bp. Subcellular localization analysis verified the nuclear presence of the RsbZIP6 protein. RT-qPCR analysis revealed the highest expression of RsbZIP6 in petals, which correlated with anthocyanin accumulation. Transgenic experiments indicated that overexpressing RsbZIP6 in Arabidopsis enhanced anthocyanin accumulation by upregulating genes involved in anthocyanin biosynthesis (4CL, CHS, CHI, DFR, F3H, F3'H, ANS and UF3GT). Our findings enhance understanding of the bZIP transcription factor family in R. simsii and underscore the vital role of RsbZIP6 in anthocyanin biosynthesis, providing insights for future genetic enhancement strategies.

6.
JAMA Cardiol ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39320873

RESUMO

Importance: Recurrence remains a challenge after ablation of outflow tract premature ventricular contractions (OT-PVCs). Although adding additional lesions next to the index effective ablation site is sometimes performed to reinforce the ablation, it remains uncertain whether this approach is effective. Objective: To test the hypothesis that additional ablation lesions would reduce the recurrence rate compared with single-point ablation at the index effective site for the ablation of OT-PVCs. Design, Setting, and Participants: This study was a multicenter, prospective, randomized clinical trial. Patients receiving their first catheter ablation for OT-PVCs were enrolled from 18 hospitals in China between October 2021 and February 2023. Scheduled follow-up duration was 3 months after the procedure. Intervention: After identifying the target point and eliminating the PVC by a single-point ablation, patients were randomized 1:1 into an additional ablation group or a control group. Main Outcomes and Measures: The primary end point of the study was freedom from PVC recurrence (≥80% reduction of PVC burden, which is the number of PVCs in 24 hours/total heartbeats in 24 hours × 100%) from baseline to 3 months postprocedure. Results: Of 308 patients enrolled in the study, 286 (mean [SD] age, 49.2 [14.6] years; 173 female [60.5%]) were randomized to the additional ablation or the control group. The additional ablation group had a mean (SD) of 6.3 (1.1) radiofrequency applications, whereas the control group (single-point ablation group) had a mean (SD) of 1 (0) radiofrequency application. After a median (IQR) follow-up of 3.2 (0) months, the rate of freedom from PVCs was significantly higher in the additional ablation group (139 of 142 [97.9%]) compared with the control group (115 of 139 [82.7%]; P < .001). Patients in the additional ablation group also had a more substantial reduction in PVC burden than the control group (mean [SD] reduction, 23.0% [10.5%] vs 19.0% [10.4%]; P = .002). There were no severe periprocedural complications in either group. Conclusions and Relevance: This randomized clinical trial showed a benefit of additional ablation in reducing the recurrence of OT-PVCs compared with the single-point ablation strategy, without increased complication risk. Additional ablations surrounding the index effective ablation point should be considered in OT-PVC ablation. Trial Registration: Chinese Clinical Trials Registry Identifier: ChiCTR2200055340.

7.
Rev Esp Enferm Dig ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39297600

RESUMO

A 53-year-old woman was diagnosed with a 15-mm submucosal tumor located in the fundus of the stomach. Endoscopic ultrasonography suggested that the tumor originated from the muscularis propria layer. Therefore, we decided to use a novel hybrid EFTR to remove the lesion. First the tumor was marked and the mucosal was incised, followed by primary tumor dissection. Then the endoscope was withdrawn. A snare was fixed to the transparent cap at the front end of the endoscope without passing through the working channel. The endoscope and snare were inserted together near the lesion. A foreign body forceps was inserted through the endoscopic working channel to grasp the top of the tumor and lift it up. After adequately exposing the tumor, the snare was released to enclose the base of the tumor, and completely excised was performed under direct view. Finally, the wound was closed with clips and endoloop. The entire operation time was less than 20 minutes. The patient was discharged soon after the operation without any adverse events.

8.
Acta Pharm Sin B ; 14(9): 4149-4163, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39309510

RESUMO

Aminoglycosides (AGs) are a class of antibiotics with a broad spectrum of activity. However, their use is limited by safety concerns associated with nephrotoxicity and ototoxicity, as well as drug resistance. To address these issues, semi-synthetic approaches for modifying natural AGs have generated new generations of AGs, however, with limited types of modification due to significant challenges in synthesis. This study explores a novel approach that harness the bacterial biosynthetic machinery of gentamicins and kanamycins to create hybrid AGs. This was achieved by glycodiversification of gentamicins via swapping the glycosyltransferase (GT) in their producer with the GT from kanamycins biosynthetic pathway and resulted in the creation of a series of novel AGs, therefore referred to as genkamicins (GKs). The manipulation of the hybrid biosynthetic pathway enabled the targeted accumulation of different GK species and the isolation and characterization of six GK components. These compounds display retained antimicrobial activity against a panel of World Health Organization (WHO) critical priority pathogens, and GK-C2a, in particular, demonstrates low ototoxicity compared to clinical drugs in zebrafish embryos. This study provides a new strategy for diversifying the structure of AGs and a potential avenue for developing less toxic AG drugs to combat infectious diseases.

9.
Ann Thorac Surg ; 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39313087

RESUMO

BACKGROUND: The characteristics of early-onset lung adenocarcinoma (EOLA) have not been extensively studied. Our research aimed to comprehensively assess the clinical and genetic features of EOLA. METHODS: We conducted a retrospective analysis of surgical resected lung adenocarcinoma patients, categorizing them into the EOLA group (aged<40 years) and the late-onset lung adenocarcinoma (LOLA) group(aged >60 years). A comparative investigation of clinical, germline, and genomic features was conducted. Propensity score matching was employed to balance baseline characteristics for gene mutation analysis. RESULTS: 487 EOLA and 2507 LOLA patients were enrolled. EOLA patients exhibited a higher female-to-male ratio (2.55 vs. 1.19) , and a higher proportion of family history of lung cancer in ground-grass opacity subgroup (12.7% vs. 8.9%). The EOLA group exhibited higher rates of earlier stage in both ground-grass opacity subgroup and solid subgroup. Pre-invasive adenocarcinoma was the dominant histologic subtype in the EOLA group within the ground-glass opacity subgroup (73.8% vs. 25.6%). After propensity score matching, we analyzed 241 stage 0/I patients with available genetic test results. Significant disparities in gene mutation rates emerged between the EOLA and LOLA patients, including ERBB2 (38.0% vs. 2.8%), EGFR (36.0% vs. 64.5%), MET (0.0% vs. 7.1%), NF1 (0.0% vs. 5.7%), ALK fusion (10.0% vs. 1.4%). CONCLUSIONS: EOLA patients exhibited distinct clinical and genetic characteristics in comparison to LOLA patients.

10.
Sci Adv ; 10(38): eadq3801, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39292772

RESUMO

Plastics redesign for circularity has primarily focused on monomer chemistries enabling faster deconstruction rates concomitant with high monomer yields. Yet, during deconstruction, polymer chains interact with their reaction medium, which remains underexplored in polymer reactivity. Here, we show that, when plastics are deconstructed in reaction media that promote swelling, initial rates are accelerated by over sixfold beyond those in small-molecule analogs. This unexpected acceleration is primarily tied to mechanochemical activation of strained polymer chains; however, changes in the activity of water under polymer confinement and bond activation in solvent-separated ion pairs are also important. Together, deconstruction times can be shortened by seven times by codesigning plastics and their deconstruction processes.

12.
Heliyon ; 10(17): e37156, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39319160

RESUMO

Gastric adenocarcinoma is one of the most death cause cancers worldwide. Metabolomics is an effective approach for investigating the occurrence and progression of cancer and detecting prognostic biomarkers by studying the profiles of small bioactive molecules. To fully decipher the functional roles of the disrupted metabolites that modulate the cellular mechanism of gastric cancer, integrated gene-metabolite association network methods are critical to map the associations between metabolites and genes. In this study, we constructed a knowledge-based gene-metabolite association network of gastric cancer using the dysregulated metabolites and genes between gastric cancer patients and control group. The topological pathway analysis and gene-protein-metabolite-disease association analysis revealed four key gene-metabolite pathways which include eleven metabolites associated with modulated genes. The integrated gene-metabolite association network enables mechanistic investigation and provides a comprehensive overview regarding the investigation of molecular mechanisms of gastric cancer, which facilitates the in-depth understanding of metabolic biomarker roles in gastric cancer.

13.
Int Immunopharmacol ; 142(Pt A): 113061, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39260313

RESUMO

BACKGROUND: Chronic anemia, especially chemotherapy-induced anemia, is a common and intractable symptom. Puzzlingly, the conventional anemic treatment may lead to various side effects, and the mechanism of stress anemia remains unclear. METHODS: Here, peripheral blood, histopathological and transmission electron microscopical examination, colony forming test, flow cytometry, and qRT-PCR assay were used to investigate the effects of Angelia sinensis polysaccharide (ASP), one main active ingredient of Chinese herb medicine Angelica sinensis, on ameliorating 5-fluorouracil (5-FU)-induced stress anemia. RESULTS: We found that intraperitoneal injection to a C57BL/6J mouse ASP 100 mg/kg per day for consecutive 10 days or 14 days, remarkably accelerated the recovery of RBC, hemoglobin, and hematocrit in blood. ASP alleviated 5-FU-caused impairment of bone marrow cell and BFU-E enumeration. Meanwhile, ASP antagonized 5-FU promoting extramedullary erythropoiesis in the spleen, inducing splenomegaly due to stress erythroblastic islands, and occurrence of megakaryocytes and hematopoietic precursors in splenic colonies. ASP increased splenic stress BFU-E enumeration, driving BFU-E differentiation towards Pro-E and end-stage erythroblasts. Furthermore, ASP increased the number of F4/80+VCAM-1+ splenic erythroblastic island central macrophages, upregulating genetic expression of EPOR, Emp, VCAM-1, Hmox-1, Trf, TfR1, Fpn1, Spi-C, DNase2a, Tim4, MertK, and Klf1 in splenocytes. CONCLUSIONS: Our findings indicate that the possible mechanism of chemotherapy-induced anemia is related to stress erythroid maturation arrest. Whereas, ASP may promote stress erythroid differentiation via elevated EPO sensitivity in extramedullary hematopoietic organs and enhanced macrophage-mediated adhesion, iron homeostasis and transfer, and nuclear engulfment, which may represent a promising therapeutic strategy.

14.
Angew Chem Int Ed Engl ; : e202415440, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39257370

RESUMO

The photocatalytic activity and inherent brittleness of ZnO, which is commonly used as an electron transport layer (ETL) in inverted organic solar cells (OSCs), have impeded advancements in device stability and the development of fully stretchable OSCs. In this study, we have developed an intrinsically stretchable ETL for inverted OSCs through a side-chain cross-linking strategy. Specifically, cross-linking between bromine atoms on the side chains of a quinoidal compound and the amino groups in polyethylenimine resulted in a film, designated QBr-PEI-50, with high electrical conductivity (0.049 S/m) and excellent stretchability (crack-onset strain >45%). When used as the ETL in inverted OSCs, QBr-PEI-50 was markedly superior to ZnO in terms of device performance and stability, yielding a power conversion efficiency (PCE) of 18.27% and a T80 lifetime exceeding 10000 h. Moreover, incorporation of QBr-PEI-50 in fully stretchable inverted OSCs yielded a PCE of 14.01%, and 80% of the initial PCE was maintained after 21% strain, showcasing its potential for wearable electronics.

15.
Macromol Rapid Commun ; : e2400536, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254587

RESUMO

The rising awareness of fire safety among consumers has driven the demand for fire retardants (FRs) that are both cost-effective and efficient across various industries, particularly in textiles. Traditional FRs often compromise fabric softness, resulting in undesirable tactile texture and stiffness changes. While the external addition of softeners can mitigate the stiffness, it may introduce issues such as a greasy texture and increased flammability. This study introduces ethanolamine polyphosphate (EAPP), an innovative organic polyphosphate, as an effective fire retardant that preserves the softness of textiles. Comprehensive evaluations are conducted on EAPP-treated textiles, revealing significant improvements in fire retardancy without compromising fabric quality. EAPP treatment (15 wt.% aqueous solutions) increases the limiting oxygen index (LOI) of pure cotton textiles from 17% to 36% and significantly reduces the peak heat release rate (pHRR) and total smoke rate (TSR) as measured by cone calorimetry. Unlike conventional FR products that form FR-salt crystal particles on the fabric surface after drying, EAPP forms a smooth FR protective layer on the fabric, enhancing mechanical fastness and maintaining tactile qualities. These findings highlight EAPP's potential as a non-washing durable, spray-on fire retardant solution for textiles, combining safety with user comfort.

16.
RSC Adv ; 14(40): 29072-29082, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39282061

RESUMO

Sulfur, as a crucial chemical raw, poses increased combustion-explosion risks when mixed with other hazardous substances due to its dual nature as both an oxidant and a reducing agent. Additionally, sulfur-induced combustion and explosions can result in environmental pollution. Combustion-explosion suppression technology plays a crucial role in industrial production by effectively preventing hazardous chemical explosion incidents. This research investigates the combustion-explosion suppression of black powder, a common hazardous chemical containing sulfur, by utilizing two solid-based blast suppressants, NH4H2PO4 and NaHCO3. On this basis, examining changes in the oxidation states of sulfur and explaining the mechanisms of combustion-explosion suppression through the examination of combustion-explosion products. Additionally, numerical calculations are employed to analyze the evolution patterns of gaseous and solid-phase products throughout the entire combustion-explosion process. Research indicates that NaHCO3 exhibits a more effective combustion-explosion suppression effect on black powder compared to NH4H2PO4, which attributed to the valence state transformation of sulfur and the reduction of carbon oxidation. Furthermore, with the enhancement of combustion-explosion suppression effect, K2S, which a pollutes the environment, is gradually transform converted into potassium fertilizer K2SO4, which benefits plants. These results offer new insights into the research of combustion-explosion suppression of sulfur-containing substances and environmental protection strategies.

17.
J Neurochem ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289038

RESUMO

Glioblastoma (GBM) is one of the most prevalent cancerous brain tumors. Former studies have reported that exosomes derived from M1-polarized macrophages (M1 exosomes) inhibit tumor occurrence and development through delivery of tumor suppressor genes. Also, microRNA-142-3p (miR-142-3p) has been verified to function as a tumor suppressor. GBM cell proliferation was evaluated by Cell Counting Kit-8 (CCK-8), colony formation assay and 5-ethynyl-2'-deoxyuridine (EdU) assay; cell apoptosis was determined by flow cytometry analysis and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Mechanism investigations were conducted for analyzing the molecular mechanism by which miR-142-3p and M1 exosomes affect GBM progression. Upregulation of miR-142-3p expression was detected in M1-polarized macrophages and M1 exosomes. M1 exosomes inhibit GBM cell proliferation and trigger cell apoptosis. Functionally, miR-142-3p silencing promotes the proliferation and inhibits the apoptosis of GBM cells treated with M1 exosomes. As for molecular mechanism, miR-142-3p inhibits GBM cell growth via targeting high-mobility group box 1 (HMGB1). In addition, miR-142-3p/HMGB1 axis affects GBM cell immune escape through modulation of programmed death-1/programmed death ligand-1 (PD-1/PD-L1) checkpoint. Our study demonstrated that exosomal miR-142-3p from M1-polarized macrophages suppresses cell growth and immune escape in GBM through regulating HMGB1-mediated PD-1/PD-L1 checkpoint.

18.
Angew Chem Int Ed Engl ; : e202411228, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39292221

RESUMO

γ-Graphyne (GY), an emerging carbon allotrope, is envisioned to offer various alluring properties and broad applicability. While significant progress has been made in the synthesis of GY over recent decades, its widespread application hinges on developing efficient, scalable, and accessible synthetic methods for the production of GY and its derivatives. Here we report a facile metal-free nucleophilic crosslinking method using wet chemistry for fast gram-scale production of GY and its derivatives. This synthesis method involves the aromatic nucleophilic substitution reactions between fluoro-(hetero)arenes and alkynyl silanes in the presence of a catalytic amount of tetrabutylammonium fluoride, where the fluoride plays a crucial role in removing protective groups from alkynyl silanes and generating reactive alkynylides. Our comprehensive analysis of the as-prepared GY reveals a layered structure, characterized by the presence of the C(sp)-C(sp2) bond. The synthetic strategy shows remarkable tolerance to various functional groups and enables the preparation of diverse F-/N-rich GY derivatives, using electron-deficient fluoro-substituted (hetero)arenes as precursors. The feasibility of producing GY and derivatives from fluorinated (hetero)arenes through the metal-free, scalable, and cost-effective approach paves the way for broad applications of GY and may inspire the development of new carbon materials.

19.
Plant Sci ; : 112264, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39277047

RESUMO

Ethylene regulates fruit ripening, and in Zanthoxylum bungeanum, fruit color deepened with increasing of ethylene during fruit ripening. However, the molecular mechanism of this physiological process was still unclear. In this study, through the combined analysis of transcriptome and metabolome, it was found that ethylene release was consistent with anthocyanin synthesis, and ethylene response factors (ERFs) were significantly related to anthocyanin biosynthesis during the fruit ripening of Z. bungeanum. Ethylene treatment significantly induced fruit coloration and promoted anthocyanin synthesis and the expression of ZbERF3. Furthermore, Yeast one-hybrid assays and Luciferase reporter assays demonstrated that ZbERF3 directly bound to the promoter of ZbMYB17 and transcriptionally activated its expression. What's more, it was demonstrated that ZbMYB17 directly bound to the promoter of ZbANS, promoting anthocyanin biosynthesis. Overall, this study revealed the mechanism of ERF and MYB synergistically regulating the coloration of Z. bungeanum fruit.

20.
Food Res Int ; 195: 114964, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39277265

RESUMO

To explore the volatile characteristics of Z. bungeanum fruits during different developmental stages, the dynamical changes of volatile organic compounds (VOCs) were detected by E-nose, GC-MS and GC-IMS, respectively. The results showed that terpenes, alcohols, esters and aldehydes played the important roles in the aroma formation of Z. bungeanum. Meanwhile, these VOCs also exhibited the high abundance levels among five growth stages of Z. bungeanum. According to the analysis of odor activity value (OAV) and relative odor activity value (ROAV), 37 VOCs can be recognized as the important aroma compounds. Thereinto, ß-myrcene and linalool were the most key aroma compounds. Multi-factor analysis exhibited that the combination of GC-MS and GC-IMS was a better strategy to clarify the volatile characteristics comprehensively. Using the above combined VOC datasets, six positively correlated modules and 32 hub VOCs were finally identified by weighted correlation network analysis among five growth stages of Z. bungeanum.


Assuntos
Nariz Eletrônico , Frutas , Cromatografia Gasosa-Espectrometria de Massas , Odorantes , Compostos Orgânicos Voláteis , Zanthoxylum , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Frutas/química , Frutas/crescimento & desenvolvimento , Zanthoxylum/química , Odorantes/análise , Monoterpenos Acíclicos/análise , Terpenos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA