Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
Magn Reson Imaging ; 111: 210-216, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38777242

RESUMO

PURPOSE: To look for links between diffusion and IVIM parameters and different molecular subtypes and prognostic factors through histogram analysis. MATERIALS AND METHODS: A total of 139 patients with breast cancer who had pre-operative MRI examinations were enrolled in this retrospective study. Histograms of the diffusion and IVIM parameters were analyzed for the whole tumor, and an association was investigated between the parameters and the different molecular prognostic factors and subtypes using the nonparametric test, Spearman's rank correlation, and receiver operating characteristic (ROC) curve. RESULTS: The histogram metrics of the diffusion and IVIM parameters were significantly different for molecular prognostic factors such as human epidermal receptor factor-2 (HER2), progesterone receptor, estrogen receptor, and ki-67. All histogram metrics displayed a poor correlation with all groups (r = -0.28-0.29). There were significant differences in the histogram metrics for the Luminal B-HER2 (-) vs. HER2-positive (non-luminal) subtypes in the mean and 10th percentile D, with the area under the curves (AUCs) of 0.742 and 0.700, respectively, and for the Luminal A and HER2-positive (non-luminal) subtypes in the 90th percentile and entropy of D*, with AUCs of 0.769 and 0.727, respectively. CONCLUSION: The histogram metrics of IVIM parameters exhibited links with breast cancer prognosis factors and combined subtypes.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38652598

RESUMO

OBJECTIVES: Patients with systemic lupus erythematosus (SLE) display heightened immune activation and elevated IgG autoantibody levels, indicating compromised regulatory T cell (Tregs) function. Our recent findings pinpoint CD8+ Tregs as crucial regulators within secondary lymphoid organs, operating in a NOX2-dependent mechanism. However, the specific involvement of CD8+ Tregs in SLE pathogenesis and the mechanisms underlying their role remain uncertain. METHODS: SLE and healthy individuals were enlisted to assess the quantity and efficacy of Tregs. CD8+CD45RA+CCR7+ Tregs were generated ex vivo, and their suppressive capability was gauged by measuring pZAP70 levels in targeted T cells. Notch1 activity was evaluated by examining activated Notch1 and HES1, with manipulation of Notch1 accomplished with Notch inhibitor DAPT, Notch1 shRNA, and Notch1-ICD. To create humanized SLE chimeras, immune-deficient NSG mice were engrafted with PBMCs from SLE patients. RESULTS: We observed a reduced frequency and impaired functionality of CD8+ Tregs in SLE patients. There was a downregulation of NOX2 in CD8+ Tregs from SLE patients, leading to a dysfunction. Mechanistically, the reduction of NOX2 in SLE CD8+ Tregs occurred at a post-translational level rather than at the transcriptional level. SLE CD8+ Tregs exhibited heightened Notch1 activity, resulting in increased expression of STUB1, an E3 ubiquitin ligase that binds to NOX2 and facilitates its ubiquitination. Consequently, restoring NOX2 levels and inhibiting Notch1 activity could alleviate the severity of the disease in humanized SLE chimeras. CONCLUSION: Notch1 is the cell-intrinsic mechanism underlying NOX2 deficiency and CD8+ Treg dysfunction, serving as a therapeutic target for clinical management of SLE.

3.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339025

RESUMO

Ventilator-induced lung injury (VILI) during mechanical ventilation (MV) has been attributed to airway remodeling involving increased airway smooth muscle cells (ASMCs), but the underlying mechanism is not fully understood. Thus, we aimed to investigate whether MV-associated high stretch (>10% strain) could modulate mechanosensitive Piezo1 expression and thereby alter cell migration of ASMCs as a potential pathway to increased ASMCs in VILI. C57BL/6 mice and ASMCs were subjected to MV at high tidal volume (VT, 18 mL/kg, 3 h) and high stretch (13% strain, 0.5 Hz, 72 h), respectively. Subsequently, the mice or cells were evaluated for Piezo1 and integrin mRNA expression by immunohistochemical staining and quantitative PCR (qPCR), and cell migration and adhesion by transwell and cell adhesion assays. Cells were either treated or not with Piezo1 siRNA, Piezo1-eGFP, Piezo1 knockin, Y27632, or blebbistatin to regulate Piezo1 mRNA expression or inhibit Rho-associated kinase (ROCK) signaling prior to migration or adhesion assessment. We found that expression of Piezo1 in in situ lung tissue, mRNA expression of Piezo1 and integrin αVß1 and cell adhesion of ASMCs isolated from mice with MV were all reduced but the cell migration of primary ASMCs (pASMCs) isolated from mice with MV was greatly enhanced. Similarly, cell line mouse ASMCs (mASMCs) cultured in vitro with high stretch showed that mRNA expression of Piezo1 and integrin αVß1 and cell adhesion were all reduced but cell migration was greatly enhanced. Interestingly, such effects of MV or high stretch on ASMCs could be either induced or abolished/reversed by down/up-regulation of Piezo1 mRNA expression and inhibition of ROCK signaling. High stretch associated with MV appears to be a mechanical modulator of Piezo1 mRNA expression and can, thus, promote cell migration of ASMCs during therapeutic MV. This may be a novel mechanism of detrimental airway remodeling associated with MV, and, therefore, a potential intervention target to treat VILI.


Assuntos
Asma , Camundongos , Animais , Asma/metabolismo , Respiração Artificial/efeitos adversos , Remodelação das Vias Aéreas , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/metabolismo , RNA Mensageiro/metabolismo , Proliferação de Células , Células Cultivadas , Canais Iônicos/genética , Canais Iônicos/metabolismo
4.
Theranostics ; 14(4): 1744-1763, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389834

RESUMO

Rationale: Bitter taste receptors (TAS2Rs) are abundantly expressed in airway smooth muscle cells (ASMCs), which have been recognized as promising targets for bitter agonists to initiate relaxation and thereby prevent excessive airway constriction as the main characteristic of asthma. However, due to the current lack of tested safe and potent agonists functioning at low effective concentrations, there has been no clinically approved TAS2R-based drug for bronchodilation in asthma therapy. This study thus aimed at exploring TAS2R agonists with bronchodilator potential by BitterDB database analysis and cell stiffness screening. Methods: Bitter compounds in the BitterDB database were retrieved and analyzed for their working subtype of TAS2R and effective concentration. Compounds activating TAS2R5, 10, and 14 at < 100 µM effective concentration were identified and subsequently screened by cell stiffness assay using optical magnetic twisting cytometry (OMTC) to identify the most potent to relax ASMCs. Then the compound identified was further characterized for efficacy on various aspects related to relaxation of ASMCs, incl. but not limited to traction force by Fourier transform traction force microscopy (FTTFM), [Ca2+]i signaling by Fluo-4/AM intensity, cell migration by scratch wound healing, mRNA expression by qPCR, and protein expressing by ELISA. The compound identified was also compared to conventional ß-agonist (isoproterenol and salbutamol) for efficacy in reducing cell stiffness of cultured ASMCs and airway resistance of ovalbumin-treated mice. Results: BitterDB analysis found 18 compounds activating TAS2R5, 10, and 14 at < 100 µM effective concentration. Cell stiffness screening of these compounds eventually identified flufenamic acid (FFA) as the most potent compound to rapidly reduce cell stiffness at 1 µM. The efficacy of FFA to relax ASMCs in vitro and abrogate airway resistance in vivo was equivalent to that of conventional ß-agonists. The FFA-induced effect on ASMCs was mediated by TAS2R14 activation, endoplasmic reticulum Ca2+ release, and large-conductance Ca2+-activated K+ (BKCa) channel opening. FFA also attenuated lipopolysaccharide-induced inflammatory response in cultured ASMCs. Conclusions: FFA as a potent TAS2R14 agonist to relax ASMCs while suppressing cytokine release might be a favorite drug agent for further development of TAS2R-based novel dual functional medication for bronchodilation and anti-inflammation in asthma therapy.


Assuntos
Asma , Ácido Flufenâmico , Camundongos , Animais , Receptores Acoplados a Proteínas G/metabolismo , Pulmão/metabolismo , Miócitos de Músculo Liso/metabolismo , Asma/tratamento farmacológico
5.
Cells ; 13(2)2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38247802

RESUMO

High stretch (>10% strain) of airway smooth muscle cells (ASMCs) due to mechanical ventilation (MV) is postulated to contribute to ventilator-induced lung injury (VILI), but the underlying mechanisms remain largely unknown. We hypothesized that ASMCs may respond to high stretch via regulatory miRNA-mRNA interactions, and thus we aimed to identify high stretch-responsive cellular events and related regulating miRNA-mRNA interactions in cultured human ASMCs with/without high stretch. RNA-Seq analysis of whole genome-wide miRNAs revealed 12 miRNAs differentially expressed (DE) in response to high stretch (7 up and 5 down, fold change >2), which target 283 DE-mRNAs as identified by a parallel mRNA sequencing and bioinformatics analysis. The KEGG and GO analysis further indicated that purine metabolism was the first enriched event in the cells during high stretch, which was linked to miR-370-5p-PDE4D/AK7. Since PDE4D/AK7 have been previously linked to cAMP/ATP metabolism in lung diseases and now to miR-370-5p in ASMCs, we thus evaluated the effect of high stretch on the cAMP/ATP level inside ASMCs. The results demonstrated that high stretch modulated the cAMP/ATP levels inside ASMCs, which could be largely abolished by miR-370-5p mimics. Together, these findings indicate that miR-370-5p-PDE4D/AK7 mediated high stretch-induced modulation of cAMP and ATP synthesis inside ASMCs. Furthermore, such interactive miRNA-mRNA pairs may provide new insights for the discovery of effective biomarkers/therapeutic targets for the diagnosis and treatment of VILI and other MV-associated respiratory diseases.


Assuntos
MicroRNAs , Humanos , MicroRNAs/genética , Miócitos de Músculo Liso , RNA Mensageiro/genética , Purinas , Trifosfato de Adenosina
6.
Biol Trace Elem Res ; 202(4): 1656-1668, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37515670

RESUMO

Zinc (Zn) is an important trace element in the human body and plays an important role in growth, development, and male reproductive functions. Marginal zinc deficiency (MZD) is common in the human population and can cause spermatogenic dysfunction in males. Therefore, the aim of this study was to investigate methods to improve spermatogenic dysfunction caused by MZD and to further explore its mechanism of action. A total of 75 4-week-old male SPF ICR mice were randomly divided into five groups (control, MZD, MZD + ZnY2, MZD + ZnY4, and MZD + ZnY8, 15 mice per group). The dietary Zn content was 30 mg/kg in the control group and 10 mg/kg in the other groups. From low to high, the Zn supplementation doses administered to the three groups were 2, 4, and 8 mg/kg·bw. After 35 days, the zinc content, sperm quality, activity of spermatogenic enzymes, oxidative stress level, and apoptosis level of the testes in mice were determined. The results showed that MZD decreased the level of Zn in the serum, sperm quality, and activity of spermatogenic enzymes in mice. After Zn supplementation, the Zn level in the serum increased, sperm quality was significantly improved, and spermatogenic enzyme activity was restored. In addition, MZD reduced the content of antioxidants (copper-zinc superoxide dismutase (Cu-Zn SOD), metallothionein (MT), and glutathione (GSH) and promoted malondialdehyde (MDA) production. The apoptosis index of the testis also increased significantly in the MZD group. After Zn supplementation, the level of oxidative stress decreased, and the apoptosis index in the testis was reduced. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) showed that the expression of B-cell lymphoma-2 (Bcl-2) mRNA and Bcl-2/BCL2-associated X (Bax) in the control group decreased in testicular cells, and their expression was restored after Zn supplementation. The results of this study indicated that Zn supplementation can reduce the level of oxidative stress and increase the ability of testicular cells to resist apoptosis, thereby improving spermatogenic dysfunction caused by MZD in mice.


Assuntos
Testículo , Zinco , Humanos , Camundongos , Masculino , Animais , Testículo/metabolismo , Camundongos Endogâmicos ICR , Sêmen/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo , Glutationa/metabolismo , Suplementos Nutricionais , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
7.
J Diabetes Investig ; 15(1): 44-51, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38031656

RESUMO

AIMS/INTRODUCTION: Serum amyloid A (SAA) is an acute phase reactive protein that plays a vital role in the early diagnosis, risk prediction, efficacy observation and prognosis evaluation of infectious diseases. This study aimed to assess the association between SAA levels and the prognosis of patients with coronavirus disease 2019 (COVID-19) and diabetes. MATERIALS AND METHODS: We carried out this retrospective cohort study from March 2022 to May 2022. The population was stratified by tertiles of SAA levels: low (<8.5 mg/L), medium (8.5-36 mg/L) and high (>36 mg/L). The primary outcome was whether the patient developed severe COVID-19, and secondary outcomes included the need for invasive mechanical ventilation and length of hospital stay. Logistic regression analyses were carried out to identify risk factors affecting the prognosis of patients with COVID-19 and diabetes. RESULTS: We analyzed 910 diabetes patients with COVID-19. The median age of the patients was 69 years, and 52.3% were men. As SAA levels increased, the proportion of severe COVID-19 (6.3% vs 7.3% vs 22.8%, P < 0.001) and the proportion of invasive mechanical ventilation also increased among the three groups. Patients with high SAA levels had a longer length of hospital stay compared with patients with medium SAA and low SAA levels. Univariate logistic regression analysis showed that SAA >36 mg/L further increased the odds ratio to 4.423 (P < 0.001) for the development of severe COVID-19 compared with low SAA. Multivariate logistic regression analysis, adjusted for age and sex, confirmed that SAA >36 mg/L remained an independent risk factor for the development of severe COVID-19 (adjusted odds ratio 3.038, P < 0.001). CONCLUSIONS: SAA levels are strongly associated with poor prognosis in patients with COVID-19 and diabetes.


Assuntos
COVID-19 , Diabetes Mellitus , Masculino , Humanos , Idoso , Feminino , COVID-19/diagnóstico , COVID-19/epidemiologia , Proteína Amiloide A Sérica/análise , Proteína Amiloide A Sérica/metabolismo , Estudos Retrospectivos , Prognóstico , Proteínas de Fase Aguda/análise , Diabetes Mellitus/epidemiologia
8.
Adv Mater ; 36(6): e2307818, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37935201

RESUMO

Materials that can respond to multiple biomarkers simultaneously, acting as an "AND" gate, have the potential to enhance tumor-targeting for drug delivery. In this study, an "AND" logic-controlled release prodrug micelle is developed for codelivering the chemotherapeutic and the stimulator of interferon genes (STING) agonist, enabling precise combinatorial therapy. The drug release is programmed by tumor-enriched boramino acids (BAA) in the tumor microenvironment and intracellular reactive oxygen species (ROS), resulting in enhanced tumor targeting. STING agonist is successfully encapsulated into prodrug micelles through π-π stacking and hydrophobic interactions. These AND logic-gated prodrug micelles can achieve tumor-targeted delivery of STING agonist, leading to significantly enhanced immune activation and antitumor efficacy in vivo. It is expected that this clinically relevant nanoplatform will provide a rational design of an effective immunotherapy combination regimen to convert immunologically "cold" tumors to immunogenic "hot" tumors, addressing the major challenges faced by immunotherapies.


Assuntos
Neoplasias , Pró-Fármacos , Humanos , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Micelas , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Imunoterapia , Microambiente Tumoral
9.
Anal Chem ; 95(42): 15585-15594, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37843131

RESUMO

Determining the grade of glioma is a critical step in choosing patients' treatment plans in clinical practices. The pathological diagnosis of patient's glioma samples requires extensive staining and imaging procedures, which are expensive and time-consuming. Current advanced uniform-width-constriction-channel-based microfluidics have proven to be effective in distinguishing cancer cells from normal tissues, such as breast cancer, ovarian cancer, prostate cancer, etc. However, the uniform-width-constriction channels can result in low yields on glioma cells with irregular morphologies and high heterogeneity. In this research, we presented an innovative cyclic conical constricted (CCC) microfluidic device to better differentiate glioma cells from normal glial cells. Compared with the widely used uniform-width-constriction microchannels, the new CCC configuration forces single cells to deform gradually and obtains the biophysical attributes from each deformation. The human-derived glioma cell lines U-87 and U-251, as well as the human-derived normal glial astrocyte cell line HA-1800 were selected as the proof of concept. The results showed that CCC channels can effectively obtain the biomechanical characteristics of different 12-25 µm glial cell lines. The patient glioma samples with WHO grades II, III, and IV were tested by CCC channels and compared between Elastic Net (ENet) and Lasso analysis. The results demonstrated that CCC channels and the ENet can successfully select critical biomechanical parameters to differentiate the grades of single-glioma cells. This CCC device can be potentially further applied to the extensive family of brain tumors at the single-cell level.


Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Ovarianas , Neoplasias da Próstata , Masculino , Feminino , Humanos , Microfluídica/métodos , Glioma/patologia , Neoplasias Encefálicas/patologia , Neoplasias da Próstata/patologia
10.
Food Chem Toxicol ; 181: 114059, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37758048

RESUMO

To evaluate and compare the safety of four selenium supplements, namely Se-enriched peptides (SeP), yeast selenium (SeY), L-Se-methylselenocysteine (L-SeMc) and sodium selenite (Na2SeO3), the subchronic toxicity study was designed by 90-day gavage administration in Sprague-Dawley rats. The doses of SeP, SeY, L-SeMc and Na2SeO3 were 0.15, 0.30 and 0.60 mg/kg bw/day, with additional dose of 0.45 mg/kg L-SeMc (All dose calculated as Se). Symptoms like growling, hair loss and significant weight loss were found at 0.60 mg/kg of L-SeMc, but not in other groups. At the dose of 0.60 mg/kg, females in Na2SeO3, SeY and L-SeMc groups showed significant elevations in ALT and/or ALP. Pathologic manifestations such as bile duct hyperplasia and cholestasis were predominantly found in females at 0.6 mg/kg of L-SeMc and SeY groups, and in males at same dose of L-SeMc group showed marked testicular atrophy. 0.60 mg/kg of SeY and Na2SeO3, and 0.30, 0.45, 0.60 mg/kg of L-SeMc induced significant reductions in sperm motility rates, rapid movement and amount. In conclusion, the NOAEL of SeP, SeY, L-SeMc, Na2SeO3 was all 0.30 mg/kg for female, and 0.60, 0.30, 0.15 and 0.30 mg/kg for male respectively. Liver and reproductive organs are possible toxic target organs of hyper selenium.


Assuntos
Selênio , Masculino , Feminino , Ratos , Animais , Ratos Sprague-Dawley , Selênio/toxicidade , Motilidade dos Espermatozoides , Suplementos Nutricionais/toxicidade , Selenito de Sódio/toxicidade , Saccharomyces cerevisiae
11.
Clin Cosmet Investig Dermatol ; 16: 2517-2523, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745274

RESUMO

Leprosy is a chronic infectious disease primarily affecting the skin and peripheral nerves and is caused by Mycobacterium leprae. Although effective control measures have significantly reduced its global incidence in recent years, its insidious onset and diverse skin manifestations pose considerable challenges to early diagnosis, particularly among young medical practitioners. This study reports a case of tuberculoid leprosy accompanied by a type I reaction (T1R) to leprosy, aiming to contribute to the broader understanding and management of the disease. The patient came from a leprosy-endemic region and had a family history of leprosy. They first presented with neuritis, characterised by numbness in the left upper limb, which is an early-stage symptom often overlooked. This case accentuates the importance of comprehensive examination techniques, including bacteriological and histological investigations, ultrasound and magnetic resonance imaging, to identify early nerve damage, which is critical for prompt diagnosis and intervention. According to World Health Organization data, approximately 200,000 new cases of leprosy are reported worldwide each year, with a prevalence rate of 0.2 cases per 10,000 individuals. The disease exhibits two clinical forms based on the host's immune response: tuberculoid leprosy in a well-immunised population and lepromatous leprosy in a poorly immunised host. The patient in this study demonstrated signs of tuberculoid leprosy, marked by isolated skin papules and plaques, and a T1R, a tissue-destructive, immune-driven inflammatory process. This case underscores the need for ongoing education and updated diagnostic tools to facilitate the early detection of leprosy, particularly in endemic areas. Moreover, attention must be given to the comprehensive care of patients, encompassing both physical and psychological aspects, to improve their quality of life and mitigate social discrimination and prejudice.

12.
Artigo em Inglês | MEDLINE | ID: mdl-37659052

RESUMO

Current work proposes elm sawdust, poplar sawdust, pine sawdust, and cotton straw with different lignocellulose compositions and structures as the research objects to investigate the relationship between the hypoglycemic activity of mycelium polysaccharides from Inonotus obliquus and lignocellulose biodegradation. Four kinds of lignocellulosic materials could significantly increase the exopolysaccharide content and α-glucosidase inhibition rate and advance the occurrence time of α-glucosidase inhibition activity. Among all groups, the polysaccharide synthesis promotion effect of the cotton straw group was the best, which exopolysaccharide yield was 92.05% higher than that of the control group after 11-day fermentation. Meanwhile, the highest α-glucosidase inhibitory activity was found in the elm sawdust group on the 11th day (30.99%, which was 137.47% higher than control), and the exopolysaccharide in the elm sawdust group showed its effectiveness on glucose consumption of insulin resistant HepG2 cells at the concentration of 20 µg/mL, significantly higher than that of the metformin group (P < 0.05). The cellulose in the non-crystalline region of elm and pine and the hemicellulose of poplar were mainly used in the fermentation of I. obliquus, while the cellulose in the crystalline zone and amorphous zone of cotton straw was degraded to improve the exopolysaccharide content of I. obliquus. This paper revealed the necessity of different kinds of lignocellulose for the synthesis of active polysaccharide from I. obliquus and provided a new idea for the regulation of polysaccharide synthesis pathway.

13.
Int J Biol Macromol ; 246: 125686, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37406913

RESUMO

Natural hydrogel-modified porous matrices with superwetting interfaces are ideal for oil/water separation. In this study, inspired by two marine organisms, a novel hydrogel coating with multi-matrix suitability, high oil/water separation capability and antifouling properties was developed. Specifically, inspired by mussel byssus, hydrogel coating was successfully deposited on porous matrix surface based on the introduction of tannic acid (TA). Moreover, inspired by the "brick and mortar" microstructure of Pinctada nacre, silica particles were in-situ synthesized in the sodium alginate (SA)/Ca2+ hydrogel to provide the filling effect and to increase strength. Furthermore, Sodium alginate-tannic acid-tetraethyl orthosilicate (SA-TA-TEOS) hydrogel coating-modified membrane exhibited super-hydrophilic and underwater super-oleophobic performance (underwater oil contact angle >150°), and achieved efficient oil/water separation for four oil/water emulsions (flux = 493-584 L·m-2·h-1 and rejection = 97.3-99.5 %). The modified membrane also demonstrated good anti-fouling performance and flux recovery. Notably, hydrogel coating-modified non-woven fabric also had high oil/water separation capacity (rejection >98 %) and cyclic stability, which proved the universal applicability of this hydrogel coating. In short, this work provides new insights into the fabrication of hydrogel coating-modified porous materials based upon a marine organism biomimetic strategy, which has potential applications in separating oil/water emulsions in industrial scenarios.


Assuntos
Incrustação Biológica , Bivalves , Nácar , Purificação da Água , Animais , Hidrogéis , Alginatos/química , Incrustação Biológica/prevenção & controle , Biônica , Taninos
14.
Cells ; 12(13)2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37443834

RESUMO

T cells are critical players in adaptive immunity, driving the tissue injury and organ damage of patients with autoimmune diseases. Consequently, investigations on T cell activation, differentiation, and function are valuable in uncovering the disease pathogenesis, thus exploring promising therapeutics for autoimmune diseases. In recent decades, accumulating studies have pinpointed immunometabolism as the fundamental determinant in controlling T cell fate. Specifically, mitochondria, as a hub of intracellular metabolism, connect glucose, lipid, and amino acid metabolic pathways. Herein, we summarize metabolic adaptations of mitochondrial oxidative phosphorylation and the relevant glucose, lipid, and amino acid metabolism during T cell activation, differentiation, and function. Further, we focused on current updates of the molecular bases for metabolic reprogramming in autoimmune T cells and advances in exploring metabolic-targeted therapeutics against autoimmune diseases. This might facilitate the in-depth understanding of autoimmune pathogeneses and the clinical management of autoimmune diseases.


Assuntos
Doenças Autoimunes , Linfócitos T , Humanos , Mitocôndrias/metabolismo , Doenças Autoimunes/metabolismo , Aminoácidos/metabolismo , Lipídeos
15.
J Ethnopharmacol ; 317: 116738, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37369336

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: A traditional Chinese medicine experience compound known as Yipibushen (YPBS) decoction stimulates qi and nourishes yin, stimulates the kidney and solid essence, dissolves phlegm and eliminates stasis. YPBS decoction has proven to be successful in treating obese type 2 diabetes mellitus with oligoasthenotspermia in clinical settings. Nevertheless, the pharmacological mechanism is not understood. AIM OF THE STUDY: Investigating the mechanism of action of YPBS decoction in enhancing the obese type 2 diabetes mellitus with oligoasthenotspermia involved network pharmacology and animal validation techniques. METHODS AND MATERIALS: The YPBS Decoction' active components were found in the TCMSP database and their targets were identified using UniProtKB. Additionally, targets for the obese type 2 diabetes mellitus with oligoasthenotspermia were found in the GeneCard, DisGeNet, TTD and OMIM databases. The intersection of active ingredients, the obese type 2 diabetes mellitus with oligoasthenotspermia was chosen as the intersection target. The protein-protein interaction (PPI) network of the intersection target was built with the aid of Cytoscape 3.9.1, the core target of PPI was obtained through software analysis in R-project, GO enrichment and KEGG enrichment analysis was carried out on the core target. Finally, animal experiments were used to verify the intersection target. RESULTS: The research revealed 74 intersection targets of YPBS decoction active ingredients in the obese type 2 diabetes mellitus with oligoasthenotspermia. There were also 18 PPI core targets, GO enrichment analysis of PPI core targets involving response to oxidative stress, membrane raft, DNA-binding transcription regulator complex and other biological processes; KEGG involving endocrine resistance, PI3K/AKT signaling pathway, apoptosis and other signal pathways. In the obese type 2 diabetes mellitus with oligoasthenotspermia mice, animal studies have shown that YPBS decoction group could decrease blood glucose levels and improve insulin resistance; improve testicular function, enhance sperm count, sperm motility, sperm viability, and decrease the malformation rate. It could increase the levels of T-SOD and GSH-Px, and decrease the MDA level. In addition to this, it could improve the amount of testosterone hormone, and enhance the expression of PI3K, p-AKT and Bcl-2. CONCLUSION: By controlling the degree of oxidative stress and the PI3K/AKT/Bcl-2 pathway, YPBS decoction may enhance the obese type 2 diabetes mellitus with Oligoasthenotspermia, provide a scientific basis for clinical diagnosis and therapy.


Assuntos
Diabetes Mellitus Tipo 2 , Medicamentos de Ervas Chinesas , Masculino , Animais , Camundongos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Sêmen , Motilidade dos Espermatozoides , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Simulação de Acoplamento Molecular
16.
Sci Rep ; 13(1): 7352, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147350

RESUMO

Lung cancer is a complex disease influenced by a variety of genetic and environmental factors. The cytokine interleukin 1 encoded by IL1B is an important mediator of the inflammatory response, and is involved in a variety of cellular activities. The effect of single nucleotide polymorphisms (SNP) at IL1B has been investigated in relation to cancer with inconsistent results. This Northeastern-Chinese case-control study involving 627 cases and 633 controls evaluated the role of three haplotype-tagging single nucleotide polymorphisms (htSNP) (rs1143633, rs3136558 and rs1143630) representing 95% of the common haplotype diversity across the IL1B gene and assessed interactions with IL1B, PPP1R13L, POLR1G and smoking duration in relation to lung cancer risk. The analyses of five genetic models showed associations with lung cancer risk for rs1143633 in the dominant model [adjusted-OR (95% CI) = 0.67 (0.52-0.85), P = 0.0012] and rs3136558 in the recessive model [adjusted-OR (95% CI) = 1.44 (1.05-1.98), P = 0.025]. Haplotype4 was associated with increased lung cancer risk [adjusted-OR (95% CI) = 1.55 (1.07-2.24), P = 0.021]. The variant G-allele of rs1143633 was protective in smoking sub-group of > 20 years. Using multifactor dimensionality reduction (MDR) analyses, we identified the three best candidate models of interactions and smoking-duration or IL1B rs1143633 as main effect. In conclusion, our findings suggest that IL1B SNP rs1143633 may associate with lower risk of lung cancer, confirming previously identified marker; IL1B SNP rs3136558 and haplotype4 consisting of IL1B htSNPs may associate with increasing risk of lung cancer; interactions of IL1B with POLR1G or PPP1R13L or smoking-duration, which is independent or combined, may involve in risk of lung cancer and lung squamous cell carcinoma.


Assuntos
População do Leste Asiático , Neoplasias Pulmonares , Humanos , Estudos de Casos e Controles , Predisposição Genética para Doença , Haplótipos , Interleucina-1beta/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/genética , Polimorfismo de Nucleotídeo Único , Proteínas Repressoras/genética
17.
Front Endocrinol (Lausanne) ; 14: 1070264, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36755918

RESUMO

Background and objective: PCOS is a common metabolic disorder in women of reproductive age, which pathogenesis is very complex. The role of ferroptosis in PCOS is a novel finding, and the mechanistic studies are not clear. Metformin is a commonly used drug of PCOS but few studies on whether metformin can improve the follicle development and ovarian function in PCOS. We aims to use PCOS mouse model to study the effect of metformin on PCOS based on the ovarian function and explored the regulation of metformin in PCOS mice by intervening in ferroptosis pathway. Materials and methods: C57 BL/6J female mice aged 4-5 weeks were purchased and gavaged with letrozole (1 mg/kg/day) combined with high-fat diet for 21days to establish PCOS model, and control group was set up. After modeling, the mice were divided into PCOS model group and metformin treatment group (Met) (n=6).The Met group were gavaged metformin (200 mg/kg/day) for 28 days. The body weight, estrous cycle, glucose tolerance test (OGTT)and insulin resistance test (ITT) were monitored. Then, The mice were euthanized to collect serum and ovaries. Elisa was used to detect changes in related serum hormones (E2, LH, FSH, TP). Ovaries used for molecular biology experiments to detect changes in GPX4, SIRT3, AMPK/p-AMPK, and mTOR/p-mTOR by Western blot and qPCR. Results: Compared with the model group mice, body weight was significantly reduced, and their estrous cycle was restored in Met group. The results of OGTT and ITT showed an improvment of glucose tolerance and insulin resistance. Morphological results showed that after metformin treatment, polycystic lesions in ovaries were reduced, the ovarian function was restored, and the expressions of SIRT3 and GPX4 were elevated. WB results demonstrated that the expressions of p-mTOR and p-AMPK in ovaries were significantly reduced in Model group, but reversed in MET group. Conclusion: Our study confirmed metformin could not only improve body weight and metabolism disorders, but also improve ovarian dysfunction in PCOS mice.In addition, we explored metformin could regulate ferroptosis to improve PCOS via the SIRT3/AMPK/mTOR pathway. Our study complements the mechanisms by which metformin improves PCOS.


Assuntos
Ferroptose , Resistência à Insulina , Metformina , Síndrome do Ovário Policístico , Sirtuína 3 , Humanos , Feminino , Camundongos , Animais , Síndrome do Ovário Policístico/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Proteínas Quinases Ativadas por AMP/metabolismo , Peso Corporal , Serina-Treonina Quinases TOR
18.
Biochem Mol Biol Educ ; 51(3): 244-253, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36825497

RESUMO

This study aimed to investigate the teaching effect of the blended BOPPPS based on an online and offline mixed teaching model ("B + BOPPPS") in the course of fermentation engineering in applied universities. The participants were 142 undergraduates majoring from the course of fermentation engineering in Food Science and Engineering in 2019 and 2020 in Huanghuai University, Zhumadian city, Henan province, China. The students in the control group (68 students) were taught in 2019, and the students in the experimental group (74 students) were taught in 2020. The traditional teaching method and "B + BOPPPS" were implemented, respectively. The teaching effect was evaluated using the questionnaire survey of course satisfaction and theoretical knowledge test. The results showed that the scores of the theoretical knowledge test in the experimental group adopting "B + BOPPPS" were significantly higher than those in the control group, and the difference was statistically significant (p < 0.01). The students had a good evaluation of the "B + BOPPPS" in many aspects, which included achieving learning goals, providing in-depth understanding of knowledge points, stimulating interest in learning, training in the ability to analyze and think about problems, and so on. The results suggested that "B + BOPPPS" could stimulate students' interest in learning and improve their subjective initiative. They could also improve students' ability to master and apply knowledge, which was conducive to improving the theoretical teaching quality of the course of fermentation engineering.


Assuntos
Aprendizagem , Estudantes , Humanos , Universidades , Fermentação , Currículo
19.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835223

RESUMO

Ventilator-induced lung injury (VILI) occurs in mechanically ventilated patients of respiratory disease and is typically characterized by airway inflammation. However, recent studies increasingly indicate that a major cause of VILI may be the excessive mechanical loading such as high stretch (>10% strain) on airway smooth muscle cells (ASMCs) due to mechanical ventilation (MV). Although ASMCs are the primary mechanosensitive cells in airways and contribute to various airway inflammation diseases, it is still unclear how they respond to high stretch and what mediates such a response. Therefore, we used whole genome-wide mRNA-sequencing (mRNA-Seq), bioinformatics, and functional identification to systematically analyze the mRNA expression profiles and signaling pathway enrichment of cultured human ASMCs exposed to high stretch (13% strain), aiming to screen the susceptible signaling pathway through which cells respond to high stretch. The data revealed that in response to high stretch, 111 mRNAs with count ≥100 in ASMCs were significantly differentially expressed (defined as DE-mRNAs). These DE-mRNAs are mainly enriched in endoplasmic reticulum (ER) stress-related signaling pathways. ER stress inhibitor (TUDCA) abolished high-stretch-enhanced mRNA expression of genes associated with ER stress, downstream inflammation signaling, and major inflammatory cytokines. These results demonstrate in a data-driven approach that in ASMCs, high stretch mainly induced ER stress and activated ER stress-related signaling and downstream inflammation response. Therefore, it suggests that ER stress and related signaling pathways in ASMCs may be potential targets for timely diagnosis and intervention of MV-related pulmonary airway diseases such as VILI.


Assuntos
Pulmão , Respiração Artificial , Humanos , Pulmão/metabolismo , Estresse do Retículo Endoplasmático , Inflamação/metabolismo , Células Cultivadas , Miócitos de Músculo Liso/metabolismo , RNA Mensageiro/metabolismo
20.
EMBO Rep ; 24(2): e54006, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36416244

RESUMO

While previous studies have identified cancer stem-like cells (CSCs) as a crucial driver for chemoresistance and tumor recurrence, the underlying mechanisms for populating the CSC pool remain unclear. Here, we identify hypermitophagy as a feature of human lung CSCs, promoting metabolic adaption via the Notch1-AMPK axis to drive CSC expansion. Specifically, mitophagy is highly active in CSCs, resulting in increased mitochondrial DNA (mtDNA) content in the lysosome. Lysosomal mtDNA acts as an endogenous ligand for Toll-like receptor 9 (TLR9) that promotes Notch1 activity. Notch1 interacts with AMPK to drive lysosomal AMPK activation by inducing metabolic stress and LKB1 phosphorylation. This TLR9-Notch1-AMPK axis supports mitochondrial metabolism to fuel CSC expansion. In patient-derived xenograft chimeras, targeting mitophagy and TLR9-dependent Notch1-AMPK pathway restricts tumor growth and CSC expansion. Taken together, mitochondrial hemostasis is interlinked with innate immune sensing and Notch1-AMPK activity to increase the CSC pool of human lung cancer.


Assuntos
Neoplasias Pulmonares , Receptor Toll-Like 9 , Humanos , Receptor Toll-Like 9/metabolismo , Mitofagia , Proteínas Quinases Ativadas por AMP/metabolismo , Pulmão , Neoplasias Pulmonares/patologia , DNA Mitocondrial/genética , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA