Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3414, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649358

RESUMO

Excitonic systems, facilitated by optical pumping, electrostatic gating or magnetic field, sustain composite particles with fascinating physics. Although various intriguing excitonic phases have been revealed via global measurements, the atomic-scale accessibility towards excitons has yet to be established. Here, we realize the ground-state interlayer exciton complexes through the intrinsic charge transfer in monolayer YbCl3/graphite heterostructure. Combining scanning tunneling microscope and theoretical calculations, the excitonic in-gap states are directly profiled. The out-of-plane excitonic charge clouds exhibit oscillating Rydberg nodal structure, while their in-plane arrangements are determined by moiré periodicity. Exploiting the tunneling probe to reflect the shape of charge clouds, we reveal the principal quantum number hierarchy of Rydberg series, which points to an excitonic energy-level configuration with unusually large binding energy. Our results demonstrate the feasibility of mapping out the charge clouds of excitons microscopically and pave a brand-new way to directly investigate the nanoscale order of exotic correlated phases.

2.
J Colloid Interface Sci ; 659: 650-664, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38198942

RESUMO

The simple preparation of mesoporous NiS2//MoS2 composite catalyst through a one-pot solvothermal method is presented. The improvement of the specific surface area (220 m2/g) and the construction of the porous structure are realized by this method in the case of no support. The organics acts as a microscopic binder contribute to uniform stacking of MoS2 with NiS2 clusters. The composite structure including NiS2 and MoS2 was obtained (proved by XRD, XPS, TEM, IR, UV-vis and RAMAN) and changed the microelectronic environment of the active metal surface (DFT calculation). The mesoporous NiS2//MoS2 catalyst (Ni1Mo1-200) showed an excellent hydrodesulfurization performance of dibenzothiophene (DBT conversion: 78 % at 260 °C) and a high ratio of direct desulfurization pathway (SDDS/HYD = 16.6) at a low reaction temperature. By combining the characterization and theoretical calculation results, the advantages of this NiS2//MoS2 composite structure in synergistic catalysis was further confirmed.

3.
Opt Express ; 31(14): 22396-22404, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37475351

RESUMO

Mechanoluminescence (ML) plays a vital role in various fields, and has gained increasing popularity over the past two decades. The widely studied materials that are capable of generating ML can be classified into two groups, self-powered and trap-controlled. Here, we demonstrate that both self-powered ML and trap-controlled ML can be achieved simultaneously in MgF2:Tm3+. Upon stimulation of external force, the 1I6→3H6 and 3H4→3H6 transitions of Tm3+ are observed, ranging from the ultraviolet-C to near-infrared. After exposure to X-rays, MgF2:Tm3+ presents a stronger ML than the uncharged sample. After cleaning up at high temperatures, the ML returns to the initial level, which is a typical characteristic of trap-controlled ML. In the end, we demonstrate the potential applications of MgF2:Tm3+ in dynamic anti-counterfeiting, and structure inspection.

4.
ACS Appl Mater Interfaces ; 15(15): 19653-19664, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37015891

RESUMO

Well-dispersed PdIn bimetallic alloy nanoparticles (1-4 nm) were immobilized on mesostructured silica by an in situ capture-alloying strategy, and PdIn-In2O3 interfaces were rationally constructed by changing the In2O3 loading and reduction temperature. The catalytic performance for benzyl alcohol partial oxidation was evaluated, and a catalytic synergy was observed. The Pd-rich PdIn-In2O3 interface is prone to be formed on the catalyst with a low In2O3 loading after being reduced at 300 °C. It was demonstrated that the Pd-rich PdIn-In2O3 interface was more active for benzyl alcohol partial oxidation than In-rich Pd2In3 species, which was likely to be formed at a high reduction temperature (400 °C). The high catalytic activity on the Pd-rich PdIn-In2O3 interface was attributed to the exposure of more Pd-enriched active sites, and an optimized PdIn-In2O3/Pd assemble ratio enhanced the oxygen transfer during partial oxidation. The density functional theory (DFT) calculation confirmed that the Pd-rich Pd3In1(111)-In2O3 interface facilitated the activation of oxygen molecules, resulting in high catalytic activity.

5.
Sensors (Basel) ; 23(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36772698

RESUMO

Diffraction algorithms with adjustable magnification are dominant in holographic projection and imaging. However, the algorithms are limited by the Nyquist sampling conditions, and simulation results with inappropriate parameters sometimes appear with aliasing. At present, many diffraction algorithms have been proposed and improved, but there is a need for an overall analysis of their sampling conditions. In this paper, some classical diffraction algorithms with adjustable magnification are summarized, and their sampling conditions in the case of plane wave or spherical wave illumination are analyzed and compared, which helps to select the appropriate diffraction algorithm according to the specific parameter conditions of the simulation to avoid aliasing.

6.
Opt Express ; 30(18): 31889-31897, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36242262

RESUMO

Luminescence-based thermometry, especially the ratiometric temperature sensing technology, has attracted considerable attention recently due to its characteristics such as non-contact operating mode and strong capacity of resisting disturbance. Differing from the conventional strategy that usually needs continuous excitation, here an optical thermometry, which we have named the persistent luminescence intensity ratio (PLIR) thermometry, is proposed. The PLIR thermometry relies on the optical material SrF2:Pr3+ that could emit luminescence for several hours and even longer after being charged by X-ray. It has been demonstrated that the PLIR is sensitive to the variation of temperature and complies with the Boltzmann distribution. More importantly, the reliability of the proposed PLIR thermometry is verified. Our work may inspire others to develop more persistent luminescence thermometry.

7.
Rev Sci Instrum ; 93(9): 095004, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182510

RESUMO

An in-fiber Michelson interferometric sensor was presented by fabricating a concavity on the end face of a single mode fiber using a single CO2 laser pulse. Reflected beams from the bottom and air-cladding boundary of the concavity are coupled into the fiber core and superimpose to generate a two-beam in-fiber Michelson interferometer. Compared with other laser-machining methods where multiple scanning cycles with precise manipulation are needed, the proposed method is more straightforward because only a single laser pulse is used to construct the sensor. The concavity constructed by the CO2 laser is very smooth, and its shape could be controlled flexibly by changing the position of the single mode fiber and the parameters of the CO2 laser pulse, so the fringe visibilities of the proposed sensors could be more than 15 dB, which is higher than that of the most reported laser-machining in-fiber Michelson interferometers. The proposed sensor was demonstrated by measuring the temperature with a sensitivity of 11.13 pm/°C. Furthermore, the proposed device is compact (<100 µm), economical, and robust. These advantages make it a promising candidate in practical applications.

8.
Opt Lett ; 47(17): 4435-4438, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36048672

RESUMO

The ultraviolet C (UVC) photon plays a key role in a broad spectrum of fields. With the implementation of the Minamata Convention, searching for a new way to achieve UVC light is highly desired. Here we develop a material of Ca2SiO4:Pr3+ that can emit UVC light upon excitation of a 450-nm laser or even a very cheap 450-nm LED, a fact confirmed by using a solar blind camera to capture UVC emission from Ca2SiO4:Pr3+. In addition, smart anti-counterfeiting and inactivation of Bacillus subtilis applications using Ca2SiO4:Pr3+ are also confirmed.


Assuntos
Luz , Raios Ultravioleta , Lasers , Fótons
9.
Nanoscale ; 14(32): 11745-11749, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35917194

RESUMO

α-RuCl3, a promising material to accomplish the Kitaev honeycomb model, has attracted enormous interest recently. Mottness and p-d bonds play vital roles in generating Kitaev interactions and underpinning the potential exotic states of quantum magnets, and the van der Waals monolayer is considered to be a better platform to approach a two-dimensional Kitaev model than the bulk. Here, we worked out the growth art of an α-RuCl3 monolayer on a graphite substrate and studied its electronic structure, particularly the delicate orbital occupations, through scanning tunneling microscopy and spectroscopy. An in-plane lattice expansion of 2.67 ± 0.83% is observed and the pronounced t2g-pπ and eg-pσ hybridization are visualized. The Mott nature is unveiled by an ∼0.6 eV full gap at the Fermi level located inside the t2g-pπ manifold which is further verified by the density functional theory calculations. The monolayer phase of α-RuCl3 fulfills the a priori criteria of recent theoretical predictions of tuning the relevant properties in this material and provides a novel platform to explore the Kitaev physics.

10.
Animals (Basel) ; 12(13)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35804617

RESUMO

The objective of the study was to elucidate the stearoyl-coenzyme A desaturase (SCD1)-dependent gene network of c9, t11-CLA biosynthesis in MAC-T cells from an energy metabolism perspective. The cells were divided into the CAY group (firstly incubated with CAY10566, a chemical inhibitor of SCD1, then incubated with trans-11-octadecenoic acid, (TVA)), the TVA group (only TVA), and the control group (without CAY, TVA). The c9, t11-CLA, and TVA contents were determined by gas chromatography. The mRNA levels of SCD1 and candidate genes were analyzed via real-time PCR. Tandem mass tag (TMT)-based quantitative proteomics, bioinformatic analysis, parallel reaction monitoring (PRM), and small RNA interference were used to explore genes involved in the SCD1-dependent c9, t11-CLA biosynthesis. The results showed that the SCD1 deficiency led by CAY10566 blocked the biosynthesis of c9, t11-CLA. In total, 60 SCD1-related proteins mainly involved in energy metabolism pathways were primarily screened by TMT-based quantitative proteomics analysis. Moreover, 17 proteins were validated using PRM analysis. Then, 11 genes were verified to have negative relationships with SCD1 after the small RNA interference analysis. Based on the above results, we concluded that genes involved in energy metabolism pathways have an impact on the SCD1-dependent molecular mechanism of c9, t11-CLA biosynthesis.

11.
Opt Lett ; 47(7): 1701-1704, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35363712

RESUMO

A novel, to the best of our knowledge, optical temperature measurement method is proposed, i.e., persistent luminescence intensity ratio (PLIR) thermometry. The PLIR thermometry relies on the micro-sized NaYF4:Pr3+ material that can emit persistent luminescence (PersL) uninterruptedly after being charged by x ray irradiation. The 3P1→3H5 and 3P0→3H5 PersL transitions, locating separately at ∼ 522 and 538 nm, have been confirmed to follow the Boltzmann distribution. The emitting intensity ratio of this pair of PersL lines is thus found to be a good indicator of the variation of temperature. Our work is expected to enrich the optical temperature sensing family.


Assuntos
Nanopartículas , Termometria , Luminescência , Temperatura , Termometria/métodos
12.
ACS Appl Mater Interfaces ; 13(42): 49780-49792, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34637263

RESUMO

A balance between catalytic activity and product selectivity remains a dilemma for the partial oxidation processes because the products are prone to be overoxidized. In this work, we report on the partial oxidation of benzyl alcohol using a modified catalyst consisting of nanosized Au-Pd particles (NPs) with tin oxide (SnOx) deposited on a mesoporous silica support. We found that the SnOx promotes the autogenous reduction of PdO to active Pd0 species on the Au-Pd NP catalyst (SnOx@AP-ox) before H2 reduction, which is due to the high oxophilicity of Sn. The presence of active Pd0 species and the enhancement of oxygen transfer by SnOx led to high catalytic activity. The benzaldehyde selectivity was enhanced with the increase of SnOx content on catalyst SnOx@AP-ox, which is ascribed to the modulated affinity of reactants and products on the catalyst surface through the redox switching of Sn species. After H2 reduction, SnOx was partially reduced and Au-Pd-Sn alloy was formed. The formation of Au-Pd-Sn alloy weakened both the catalytic synergy of Au-Pd alloy NPs and the adsorption of benzyl alcohol on the reduced catalyst, thus leading to low catalytic activity.

13.
PLoS One ; 16(4): e0249754, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33826641

RESUMO

We propose an agent-based model for predicting individual flight delays in an entire air traffic network. In contrast to previous work, more detailed parameter estimation methods were incorporated into the agent-based model, acting on the state transitions of agents. Specifically, a conditional probability model was proposed for modifying the expected departure time, which was used to indicate whether a flight had experienced the necessary waiting due to Ground Delay Programs (GDPs) or carrier-related reasons. Additionally, two random forest regression models were presented for estimating the turnaround time and the elapsed time of flight agents in the agent-based delay prediction model. The parameter models were trained and fitted using the flight data for 2017 in the United States. The performance of the delay prediction model was tested for thirty days with three types of delay levels (low, medium, and high), which were randomly selected from 2018. The experimental results showed that the average absolute error in the test days was 6.8 min, and the classification accuracy with a 15 min threshold for a two-hour forecast horizon was 89.5%. The performance of our model outperformed that of existing research. Additionally, the positive effect of introducing parameter models and the negative impact of increasing the prediction horizon on the prediction performance were further studied.


Assuntos
Aeronaves/estatística & dados numéricos , Agendamento de Consultas , Viagem/estatística & dados numéricos , Análise de Sistemas
14.
ACS Appl Mater Interfaces ; 9(11): 9795-9804, 2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28245100

RESUMO

We report a green, template-free, and general one-pot method of endogenous growth of free-standing boehmite (AlOOH) nanosheets on a 3D-network 60 µm-Al-fiber felt through water-only hydrothermal oxidation reaction between Al metal and H2O (2Al + 4H2O → 2AlOOH + 3H2). Content and morphology of AlOOH nanosheets can be finely tuned by adjusting the hydrothermal oxidation time length and temperature. Palladium is highly dispersed on such AlOOH endogenously formed on Al-fiber felt via incipient wetness impregnation method and as-obtained Pd/AlOOH/Al-fiber catalysts are checked in the CO coupling to dimethyl oxalate (DMO) reaction. Interestingly, Pd dispersion is very sensitive to the thickness (26-68 nm) of AlOOH nanosheet, and therefore the conversion shows strong AlOOH-nanosheet-thickness dependence whereas the intrinsic activity (TOF) is AlOOH-nanosheet-thickness independence. The most promising structured catalyst is the one using a microfibrous-structured composite with the thinnest AlOOH nanosheet (26 nm) to support a small amount of Pd of only 0.26 wt %. This catalyst, with high thermal-conductivity and satisfying structural robustness, delivers 67% CO conversion and 96% DMO selectivity at 150 °C using a feed of CH3ONO/CO/N2 (1/1.4/7.6, vol) and a gas hourly space velocity of 3000 L kg-1 h-1, and particularly, is very stable for at least 150 h without deactivation sign.

15.
Chem Commun (Camb) ; 51(63): 12613-6, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26158722

RESUMO

A monolithic Ni-foam@PdNi(alloy) catalyst is tailored for coalbed methane deoxygenation via galvanically depositing Pd nanoparticles on a Ni-foam surface followed by in situ activation. Experimental and theoretical studies unanimously reveal that the in situ formed PdNi alloy contributes to high activity/selectivity, good stability and oscillation elimination.

16.
Chem Commun (Camb) ; 50(48): 6343-5, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24798420

RESUMO

We report a macroscopic stainless-steel-fiber@HZSM-5 core-shell catalyst by direct growth of 27 wt% HZSM-5 on a 3D microfibrous structure using 20 µm SS fibers, demonstrating dramatic selectivity and stability improvement in the MTP process. The unprecedented performance is due to the promotion of the olefin methylation/cracking cycle in methanol-to-hydrocarbon catalysis.

17.
Carbohydr Polym ; 98(1): 161-7, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23987330

RESUMO

Microcrystalline cellulose (MCC)/nano-SiO2 composite fibers were processed from solutions in 1-allyl-3-methylimidazolium chloride (AMIMCl) by the method of dry-jet wet spinning. The oscillatory shear measurements demonstrated that the gel network formed above 10 wt% nano-SiO2 and the complex viscosity increased with increasing nano-SiO2. Remarkably, the shear viscosity of the nanofluids was even lower than solutions without nano-SiO2 under high shear rates. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images revealed that well-dispersed particles exhibit strong interfacial interactions with cellulose matrix. Measurements on wide-angle X-ray diffraction (WAXD) indicated that the regenerated cellulose and nanocomposite fibers were the typical cellulose II crystalline form, which was different from the native cellulose with the polymorph of Type I. The tensile strength of the nanocomposite fibers was larger than that of pure cellulose fiber and showed a tendency to increase and then decrease with increasing nano-SiO2. Furthermore, the nanocomposite fibers exhibited improved thermal stability.


Assuntos
Celulose/química , Líquidos Iônicos/química , Nanocompostos/química , Nanofibras/química , Nanotecnologia , Dióxido de Silício/química , Reologia
18.
J Nanosci Nanotechnol ; 11(6): 5207-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21770165

RESUMO

Polycrystalline BiFeO3 nanoparticles (size 30-50 nm) were prepared by a simple microwave synthesis technique. The nanoparticles were characterized by XRD, TEM and TG-DTA. The applied experiments show that they are very efficient for photo-catalytic decomposition of organic contaminants under irradiation ultraviolet frequency. The as-obtained BiFeO3 nanoparticles also demonstrate strong ferromagnetism of about 0.045 microB/Fe at room temperature, which is in good agreement with theoretical calculations.

19.
Sci China Life Sci ; 54(3): 201-8, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21416320

RESUMO

RNA silencing is a conserved mechanism found ubiquitously in eukaryotic organisms. It has been used to regulate gene expression and development. In addition, RNA silencing serves as an important mechanism in plants' defense against invasive nucleic acids, such as viruses, transposons, and transgenes. As a counter-defense, most plants, and some animal viruses, encode RNA silencing suppressors to interfere at one or several points of the silencing pathway. In this study, we showed that Pns12 of RGDV (Rice gall dwarf virus) exhibits silencing suppressor activity on the reporter green fluorescent protein in transgenic Nicotiana benthamiana line 16c. Pns12 of RGDV suppressed local silencing induced by sense RNA but had no effect on that induced by dsRNA. Expression of Pns12 also enhanced Potato virus X pathogenicity in N. benthamiana. Collectively, these results suggested that RGDV Pns12 functions as a virus suppressor of RNA silencing, which might target an upstream step of dsRNA formation in the RNA silencing pathway. Furthermore, we showed that Pns12 is localized mainly in the nucleus of N. benthamiana leaf cells.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/virologia , Doenças das Plantas/virologia , Vírus de Plantas/metabolismo , Interferência de RNA , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Vírus de Plantas/genética , Vírus de Plantas/patogenicidade , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Nicotiana/citologia , Nicotiana/genética , Nicotiana/virologia , Proteínas Virais/genética
20.
Virol J ; 7: 335, 2010 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-21092155

RESUMO

RNA silencing is a potent antiviral response in plants. As a counterdefense, most plant and some animal viruses encode RNA silencing suppressors. In this study, we showed that Pns6, a putative movement protein of Rice ragged stunt virus (RRSV), exhibited silencing suppressor activity in coinfiltration assays with the reporter green fluorescent protein (GFP) in transgenic Nicotiana benthamiana line 16c. Pns6 of RRSV suppressed local silencing induced by sense RNA but had no effect on that induced by dsRNA. Deletion of a region involved in RNA binding abolished the silencing suppressor activity of Pns6. Further, expression of Pns6 enhanced Potato virus × pathogenicity in N. benthamiana. Collectively, these results suggested that RRSV Pns6 functions as a virus suppressor of RNA silencing that targets an upstream step of the dsRNA formation in the RNA silencing pathway. This is the first silencing suppressor to be identified from the genus Oryzavirus.


Assuntos
Interações Hospedeiro-Patógeno , Nicotiana/imunologia , Doenças das Plantas/virologia , Proteínas do Movimento Viral em Plantas/metabolismo , Interferência de RNA , Reoviridae/imunologia , Reoviridae/patogenicidade , Sítios de Ligação , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas do Movimento Viral em Plantas/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/virologia , Potexvirus/imunologia , Potexvirus/patogenicidade , Ligação Proteica , Reoviridae/genética , Deleção de Sequência , Coloração e Rotulagem/métodos , Nicotiana/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA