Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38105994

RESUMO

3D organization of the genome plays a critical role in regulating gene expression. However, it remains unclear how chromatin organization differs among different cell types in the brain. Here we used genome-scale DNA and RNA imaging to investigate 3D-genome organization in transcriptionally distinct cell types in the primary motor cortex of the mouse brain. We uncovered a wide spectrum of differences in the nuclear architecture and 3D-genome organization among different cell types, ranging from the physical size of the cell nucleus to the active-inactive chromatin compartmentalization and radial positioning of chromatin loci within the nucleus. These cell-type-dependent variations in nuclear architecture and chromatin organization exhibited strong correlation with both total transcriptional activity of the cell and transcriptional regulation of cell-type-specific marker genes. Moreover, we found that the methylated-DNA-binding protein MeCP2 regulates transcription in a divergent manner, depending on the nuclear radial positions of chromatin loci, through modulating active-inactive chromatin compartmentalization.

2.
Nat Commun ; 14(1): 1771, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997523

RESUMO

Disrupted synaptic inhibition is implicated in neuropsychiatric disorders, yet the molecular mechanisms that shape and sustain inhibitory synapses are poorly understood. Here, we show through rescue experiments performed using Neurexin-3 conditional knockout mice that alternative splicing at SS2 and SS4 regulates the release probability, but not the number, of inhibitory synapses in the olfactory bulb and prefrontal cortex independent of sex. Neurexin-3 splice variants that mediate Neurexin-3 binding to dystroglycan enable inhibitory synapse function, whereas splice variants that don't allow dystroglycan binding do not. Furthermore, a minimal Neurexin-3 protein that binds to dystroglycan fully sustains inhibitory synaptic function, indicating that trans-synaptic dystroglycan binding is necessary and sufficient for Neurexin-3 function in inhibitory synaptic transmission. Thus, Neurexin-3 enables a normal release probability at inhibitory synapses via a trans-synaptic feedback signaling loop consisting of presynaptic Neurexin-3 and postsynaptic dystroglycan.


Assuntos
Processamento Alternativo , Distroglicanas , Animais , Camundongos , Processamento Alternativo/genética , Moléculas de Adesão Celular/metabolismo , Distroglicanas/genética , Distroglicanas/metabolismo , Sinapses/metabolismo , Transmissão Sináptica
3.
Sci Adv ; 7(51): eabk1924, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34919427

RESUMO

Synapses are thought to be organized by interactions of presynaptic neurexins with postsynaptic ligands, particularly with neuroligins and cerebellins. However, when a neuron forms adjacent pre- and postsynaptic specializations, as in dendrodendritic or axo-axonic synapses, nonfunctional cis neurexin/ligand interactions would be energetically favored. Here, we reveal an organizational principle for preventing synaptic cis interactions ("self-avoidance"). Using dendrodendritic synapses between mitral and granule cells in the olfactory bulb as a paradigm, we show that, owing to its higher binding affinity, cerebellin-1 blocks the cis interaction of neurexins with neuroligins, thereby enabling trans neurexin/neuroligin interaction. In mitral cells, ablating either cerebellin-1 or neuroligins severely impaired granule cell➔mitral cell synapses, as did overexpression of wild-type neurexins but not of mutant neurexins unable to bind to neuroligins. Our data uncover a molecular interaction network that organizes the self-avoidance of nonfunctional neurexin/ligand cis interactions, thus allowing assembly of physiological trans interactions.

4.
Neuron ; 107(1): 144-157.e4, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32369733

RESUMO

During social transmission of food preference (STFP), the combination of an olfactory sensory input with a social cue induces long-term memory of a food odor. How a social cue produces long-term learning of an olfactory input, however, remains unknown. Here we show that the neurons of the anterior olfactory nucleus (AON), which form abundant synaptic projections onto granule cells in the olfactory bulb (OB), express the synaptogenic molecule C1ql3. Deletion of C1ql3 in the dorsolateral AON impaired synaptic AON→OB connections and abolished acquisition, but not recall, of STFP memory without significantly affecting basal olfaction. Moreover, deletion in granule cells of the OB of Bai3, a postsynaptic GPCR that binds C1ql3, similarly suppressed synaptic transmission at AON→OB projections and abolished acquisition, but not recall, of STFP memory. Thus, synaptic AON→OB connections are selectively required for STFP memory acquisition and are formed by an essential interaction of presynaptic C1ql3 with postsynaptic Bai3.


Assuntos
Preferências Alimentares/fisiologia , Aprendizagem/fisiologia , Bulbo Olfatório/fisiologia , Condutos Olfatórios/fisiologia , Transmissão Sináptica/fisiologia , Animais , Sinais (Psicologia) , Glicoproteínas de Membrana/metabolismo , Rememoração Mental/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/fisiologia , Receptores de Complemento/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA