Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 476
Filtrar
1.
iScience ; 27(10): 111018, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39429785

RESUMO

Heart failure (HF) is a global concern, particularly HF with preserved ejection fraction (HFpEF), lacking effective treatments. Understanding the differences of metabolic profiles between HFpEF and HFrEF (heart failure with reduced ejection fraction) patients is crucial for therapeutic advancements. In this study, pseudotargeted metabolomics was employed to analyze for disparities of plasma metabolic profiles between HFpEF and HFrEF in two cohorts: discovery (n = 514) and validation (n = 3368). Plasma-free carnitine levels were significant changed in HF patients. A non-linear and U-shaped (for HFpEF) or J-shaped (for HFrEF) association between circulating free carnitine levels and the composite risk of cardiac events were observed. Interestingly, HFpEF patients with low free carnitine (≤40.18 µmol/L) displayed a poorer survival, contrasting with HFrEF where higher levels (≥35.67 µmol/L) were linked to poorer outcomes, indicating distinct metabolism pathways. In conclusion, these findings offer insights into HFpEF metabolic profiles, suggesting potential therapeutic targets.

2.
Br J Pharmacol ; 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39442535

RESUMO

BACKGROUND AND PURPOSE: Fulminant myocarditis (FM) is a myocardial inflammatory disease that can result from either viral diseases or autoimmune diseases. In this study, we have determined the treatment effects of immunomodulatory drugs on FM. EXPERIMENTAL APPROACH: FM was induced in A/JGpt mice by intraperitoneal administration of coxsackievirus B3, after which immunoglobins were administered daily by intraperitoneal injection. On the seventh day, the cardiac structure and function were determined using echocardiography and cardiac catheterisation. Single-cell RNA sequencing (scRNA-seq) was performed to evaluate CD45+ cells in the heart. KEY RESULTS: Immunoglobin, a typical immunomodulatory drug, dramatically reduced mortality and significantly improved cardiac function in mice with FM. ScRNA-seq revealed that immunoglobin treatment effectively modulated cardiac immune homeostasis, particularly by attenuating overactivated innate immune responses. At the cellular level, immunoglobin predominantly targeted Plac8+ monocytes and S100a8+ neutrophils, suppressing their proinflammatory activities, and enhancing antigen processing and presentation capabilities, thereby amplifying the efficiency and potency of the immune response against the virus. Immunoglobin benefits are mediated by the modulation of multiple signalling pathways, including relevant receptors on immune cells, direction of inflammatory cell chemotaxis, antigen presentation and anti-viral effects. Subsequently, Bst2-ILT7 ligand-receptor-mediated cellular interactions manipulated by immunoglobin were further confirmed in vivo. CONCLUSIONS AND IMPLICATIONS: Immunoglobin treatment significantly attenuated FM-induced cardiac inflammation and improved cardiac function by inhibiting overactivated innate immune responses.

3.
Biomed Pharmacother ; 179: 117289, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39151311

RESUMO

Cardiovascular diseases (CVDs) continue to pose a significant burden on global health, prominently contributing to morbidity and mortality rates worldwide. Recent years have witnessed an increasing recognition of the intricate involvement of neutrophil extracellular traps (NETs) in the pathology of diverse cardiovascular conditions. This review provides a comprehensive analysis of the multifaceted functions of NETs in cardiovascular diseases, shedding light on the impact on atherosclerosis, myocardial infarction, heart failure, myocarditis, atrial fibrillation, aortic stenosis, and the potential therapeutic avenues targeting NETs.


Assuntos
Doenças Cardiovasculares , Armadilhas Extracelulares , Neutrófilos , Armadilhas Extracelulares/metabolismo , Humanos , Animais , Neutrófilos/metabolismo , Neutrófilos/imunologia
4.
Mol Metab ; 88: 102011, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39173944

RESUMO

OBJECTIVE: Emerging evidence highlights the pivotal roles of long non-coding RNAs (lncRNAs) in lipid metabolism. Apoprotein C3 (ApoC3) is a well-established therapeutic target for hypertriglyceridemia and exhibits a strong association with cardiovascular disease. However, the exact mechanisms via which the lncRNAs control ApoC3 expression remain unclear. METHODS: We identified a novel long noncoding RNA (lncRNA), GM47544, within the ApoA1/C3/A4/A5 gene cluster. Subsequently, the effect of GM47544 on intracellular triglyceride metabolism was analyzed. The diet-induced mouse models of hyperlipidemia and atherosclerosis were established to explore the effect of GM47544 on dyslipidemia and plaque formation in vivo. The molecular mechanism was explored through RNA sequencing, immunoprecipitation, RNA pull-down assay, and RNA immunoprecipitation. RESULTS: GM47544 was overexpressed under high-fat stimulation. GM47544 effectively improved hepatic steatosis, reduced blood lipid levels, and alleviated atherosclerosis in vitro and in vivo. Mechanistically, GM47544 directly bound to ApoC3 and facilitated the ubiquitination at lysine 79 in ApoC3, thereby facilitating ApoC3 degradation via the ubiquitin-proteasome pathway. Moreover, we identified AP006216.5 as the human GM47544 transcript, which fulfills a comparable function in human hepatocytes. CONCLUSIONS: The identification of GM47544 as a lncRNA modulator of ApoC3 reveals a novel mechanism of post-translational modification, with significant clinical implications for the treatment of hypertriglyceridemia and atherosclerosis.


Assuntos
Apolipoproteína C-III , Camundongos Endogâmicos C57BL , RNA Longo não Codificante , Triglicerídeos , Ubiquitinação , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/genética , Apolipoproteína C-III/metabolismo , Apolipoproteína C-III/genética , Animais , Camundongos , Humanos , Triglicerídeos/metabolismo , Masculino , Metabolismo dos Lipídeos , Proteólise , Aterosclerose/metabolismo , Aterosclerose/genética
5.
Int Immunopharmacol ; 141: 112965, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39186836

RESUMO

BACKGROUND: Immune response and inflammation play important roles in the physiological and pathophysiological processes of heart failure (HF). In our previous study, myeloid-derived suppressor cells (MDSCs), a heterogeneous group of immature myeloid cells with anti-inflammatory and immunosuppressive functions, were shown to exert cardioprotective effects in HF. The pharmacological targeting of MDSCs using rapamycin may emerge as a promising strategy for the prevention and treatment of HF. However, the specific mechanisms underlying rapamycin-induced MDSC accumulation remain unclear. Our study aimed to clarify the effects of rapamycin on the recruitment and function of MDSCs in HF, exploring new therapeutic options for the prevention and treatment of HF. METHODS: We used transverse aortic constriction surgery and isoproterenol injection to establish HF models. Flow cytometry, reverse transcription polymerase chain reaction, transcriptomics and western blot were used to explore the regulation of rapamycin on recruitment and function of MDSCs in HF. Furthermore, rapamycin and granulocyte-macrophage colony-stimulating factor (GM-CSF) were combined to induce exogenous MDSCs from bone marrow cells. RESULTS: Rapamycin promotes the recruitment of MDSCs by inhibiting their maturation and differentiation via suppression of the Wnt signaling in HF mice and enhanced the immunosuppressive function of MDSCs via the NF-κB signaling. Furthermore, exogenous MDSCs induced by rapamycin and GM-CSF can significantly alleviate transverse aortic constriction-induced cardiac dysfunction. CONCLUSIONS: The pharmacological targeting of MDSCs using rapamycin is a promising strategy for the prevention and treatment of HF.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Insuficiência Cardíaca , Camundongos Endogâmicos C57BL , Células Supressoras Mieloides , Sirolimo , Animais , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/imunologia , Células Supressoras Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/imunologia , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Masculino , Camundongos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Modelos Animais de Doenças , NF-kappa B/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas
6.
Ageing Res Rev ; 100: 102467, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39187021

RESUMO

Heart failure (HF), as the terminal manifestation of multiple cardiovascular diseases, causes a huge socioeconomic burden worldwide. Despite the advances in drugs and medical-assisted devices, the prognosis of HF remains poor. HF is well-accepted as a myriad of subcellular dys-synchrony related to detrimental structural and functional remodelling of cardiac components, including cardiomyocytes, fibroblasts, endothelial cells and macrophages. Through the covalent chemical process, post-translational modifications (PTMs) can coordinate protein functions, such as re-localizing cellular proteins, marking proteins for degradation, inducing interactions with other proteins and tuning enzyme activities, to participate in the progress of HF. Phosphorylation, acetylation, and ubiquitination predominate in the currently reported PTMs. In addition, advanced HF is commonly accompanied by metabolic remodelling including enhanced glycolysis. Thus, glycosylation induced by disturbed energy supply is also important. In this review, firstly, we addressed the main types of HF. Then, considering that PTMs are associated with subcellular locations, we summarized the leading regulation mechanisms in organelles of distinctive cell types of different types of HF, respectively. Subsequently, we outlined the aforementioned four PTMs of key proteins and signaling sites in HF. Finally, we discussed the perspectives of PTMs for potential therapeutic targets in HF.


Assuntos
Insuficiência Cardíaca , Processamento de Proteína Pós-Traducional , Insuficiência Cardíaca/metabolismo , Humanos , Animais , Acetilação
7.
J Clin Invest ; 134(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38950288

RESUMO

Research advances over the past 30 years have confirmed a critical role for genetics in the etiology of dilated cardiomyopathies (DCMs). However, full knowledge of the genetic architecture of DCM remains incomplete. We identified candidate DCM causal gene, C10orf71, in a large family with 8 patients with DCM by whole-exome sequencing. Four loss-of-function variants of C10orf71 were subsequently identified in an additional group of492 patients with sporadic DCM from 2 independent cohorts. C10orf71 was found to be an intrinsically disordered protein specifically expressed in cardiomyocytes. C10orf71-KO mice had abnormal heart morphogenesis during embryonic development and cardiac dysfunction as adults with altered expression and splicing of contractile cardiac genes. C10orf71-null cardiomyocytes exhibited impaired contractile function with unaffected sarcomere structure. Cardiomyocytes and heart organoids derived from human induced pluripotent stem cells with C10orf71 frameshift variants also had contractile defects with normal electrophysiological activity. A rescue study using a cardiac myosin activator, omecamtiv mecarbil, restored contractile function in C10orf71-KO mice. These data support C10orf71 as a causal gene for DCM by contributing to the contractile function of cardiomyocytes. Mutation-specific pathophysiology may suggest therapeutic targets and more individualized therapy.


Assuntos
Cardiomiopatia Dilatada , Mutação da Fase de Leitura , Camundongos Knockout , Miócitos Cardíacos , Organoides , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/metabolismo , Modelos Animais de Doenças , Contração Miocárdica/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Organoides/metabolismo , Organoides/patologia
8.
Inflammation ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012560

RESUMO

Kynurenine to tryptophan ratio (KTR), which serves as an indicator for evaluating indoleamine-2,3-dioxygenase activity and inflammation, has been reported to be linked with cardiovascular incidences. However, its correlation with cardiovascular outcomes in patients suffering from heart failure (HF) remains to be explored. The objective of this study was to investigate the prognostic value of KTR in HF. The concentration of tryptophan and kynurenine were quantified by liquid chromatography-tandem mass spectrometry, and the KTR value was calculated in a population of 3150 HF patients. The correlation between plasma KTR levels and the occurrence of adverse cardiovascular events was evaluated for its prognostic value. We also assessed the role of KTR in addition to the classic inflammatory biomarker hypersensitive C-reactive protein (hs-CRP) in different subtypes of HF. We found that increased KTR levels were associated with an elevated risk and severity of the primary endpoints in different subtypes of HF. The simultaneous evaluation of KTR and hs-CRP levels enhanced risk categorization among HF patients. Furthermore, the KTR index presented complementary prognostic value for those HF patients with low-grade inflammation (hs-CRP ≤ 6 mg/L). Our results indicated plasma KTR is an independent risk factor for cardiovascular events. Plasma KTR levels in patients with HF can provide both concurrent and complementary prognostic value to hs-CRP.

9.
Circulation ; 150(13): 1030-1049, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-38841852

RESUMO

BACKGROUND: Dilated cardiomyopathy is characterized by left ventricular dilation and continuous systolic dysfunction. Mitochondrial impairment is critical in dilated cardiomyopathy; however, the underlying mechanisms remain unclear. Here, we explored the cardioprotective role of a heart-enriched long noncoding RNA, the dilated cardiomyopathy repressive transcript (DCRT), in maintaining mitochondrial function. METHODS: The DCRT knockout (DCRT-/-) mice and DCRT knockout cells were developed using CRISPR-Cas9 technology. Cardiac-specific DCRT transgenic mice were generated using α-myosin heavy chain promoter. Chromatin coimmunoprecipitation, RNA immunoprecipitation, Western blot, and isoform sequencing were performed to investigate the underlying mechanisms. RESULTS: We found that the long noncoding RNA DCRT was highly enriched in the normal heart tissues and that its expression was significantly downregulated in the myocardium of patients with dilated cardiomyopathy. DCRT-/- mice spontaneously developed cardiac dysfunction and enlargement with mitochondrial impairment. DCRT transgene or overexpression with the recombinant adeno-associated virus system in mice attenuated cardiac dysfunction induced by transverse aortic constriction treatment. Mechanistically, DCRT inhibited the third exon skipping of NDUFS2 (NADH dehydrogenase ubiquinone iron-sulfur protein 2) by directly binding to PTBP1 (polypyrimidine tract binding protein 1) in the nucleus of cardiomyocytes. Skipping of the third exon of NDUFS2 induced mitochondrial dysfunction by competitively inhibiting mitochondrial complex I activity and binding to PRDX5 (peroxiredoxin 5) and suppressing its antioxidant activity. Furthermore, coenzyme Q10 partially alleviated mitochondrial dysfunction in cardiomyocytes caused by DCRT reduction. CONCLUSIONS: Our study revealed that the loss of DCRT contributed to PTBP1-mediated exon skipping of NDUFS2, thereby inducing cardiac mitochondrial dysfunction during dilated cardiomyopathy development, which could be partially treated with coenzyme Q10 supplementation.


Assuntos
Processamento Alternativo , Cardiomiopatia Dilatada , Ribonucleoproteínas Nucleares Heterogêneas , Camundongos Knockout , Proteína de Ligação a Regiões Ricas em Polipirimidinas , RNA Longo não Codificante , Animais , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Camundongos , Humanos , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Masculino , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Mitocôndrias Cardíacas/genética , Camundongos Transgênicos
10.
Front Med ; 18(3): 484-498, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38743133

RESUMO

lncRNA ZNF593 antisense (ZNF593-AS) transcripts have been implicated in heart failure through the regulation of myocardial contractility. The decreased transcriptional activity of ZNF593-AS has also been detected in cardiac hypertrophy. However, the function of ZNF593-AS in cardiac hypertrophy remains unclear. Herein, we report that the expression of ZNF593-AS reduced in a mouse model of left ventricular hypertrophy and cardiomyocytes in response to treatment with the hypertrophic agonist phenylephrine (PE). In vivo, ZNF593-AS aggravated pressure overload-induced cardiac hypertrophy in knockout mice. By contrast, cardiomyocyte-specific transgenic mice (ZNF593-AS MHC-Tg) exhibited attenuated TAC-induced cardiac hypertrophy. In vitro, vector-based overexpression using murine or human ZNF593-AS alleviated PE-induced myocyte hypertrophy, whereas GapmeR-induced inhibition aggravated hypertrophic phenotypes. By using RNA-seq and gene set enrichment analyses, we identified a link between ZNF593-AS and oxidative phosphorylation and found that mitofusin 2 (Mfn2) is a direct target of ZNF593-AS. ZNF593-AS exerts an antihypertrophic effect by upregulating Mfn2 expression and improving mitochondrial function. Therefore, it represents a promising therapeutic target for combating pathological cardiac remodeling.


Assuntos
Cardiomegalia , GTP Fosfo-Hidrolases , Miócitos Cardíacos , RNA Longo não Codificante , Regulação para Cima , Animais , Humanos , Masculino , Camundongos , Cardiomegalia/genética , Cardiomegalia/metabolismo , Modelos Animais de Doenças , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Remodelação Ventricular/genética
11.
Analyst ; 149(12): 3444-3455, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38738630

RESUMO

Numerous studies have revealed a close correlation between the levels of apolipoproteins (Apos) (including lipoprotein(a) [Lp(a)]) and an increased risk of cardiovascular disease in recent decades. However, clinically, lipid profiling remains limited to the conventional plasma levels of cholesterol, triglyceride, ApoA1, and ApoB, which brings the necessity to quantify more apolipoproteins in human plasma. In this study, we simultaneously quantified 13 apolipoproteins and Lp(a) in 5 µL of human plasma using the LC-MS/MS platform. A method was developed for the precise detection of Lp(a), ApoA1, A2, A5, B, C1, C2, C3, D, E, H, L1, M, and J. Suitable peptides were selected and optimized to achieve clear separation of each peak. Method validation consisting of linearity, sensitivity, accuracy and precision, recovery, and matrix effects was evaluated. The intra-day CV ranged from 0.58% to 14.2% and the inter-day CV ranged from 0.51% to 13.3%. The recovery rates ranged from 89.8% to 113.7%, while matrix effects ranged from 85.4% to 113.9% for all apolipoproteins and Lp(a). Stability tests demonstrated that these apolipoproteins remained stable for 3 days at 4 °C and 7 days at -20 °C. This validated method was successfully applied to human plasma samples obtained from 45 volunteers. The quantitative results of ApoA1, ApoB, and Lp(a) exhibited a close correlation with the results from the immunity transmission turbidity assay. Collectively, we developed a robust assay that can be used for high-throughput quantification of apolipoproteins and Lp(a) simultaneously for investigating related risk factors in patients with dyslipidemia.


Assuntos
Apolipoproteínas , Lipoproteína(a) , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Apolipoproteínas/sangue , Lipoproteína(a)/sangue , Cromatografia Líquida/métodos , Análise Química do Sangue/métodos , Espectrometria de Massa com Cromatografia Líquida
12.
Sci China Life Sci ; 67(6): 1155-1169, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811441

RESUMO

CFIRL is a long noncoding RNA (lncRNA), we previously identified as the most significantly upregulated lncRNA in the failing hearts of patients with dilated cardiomyopathy (DCM). In this study, we determined the function of CFIRL and its role in DCM. Real-time polymerase chain reaction and in situ hybridization assays revealed that CFIRL was primarily localized in the nucleus of cardiac fibroblasts and robustly increased in failing hearts. Global knockdown or fibroblast-specific knockout of CFIRL attenuated transverse aortic constriction (TAC)-induced cardiac dysfunction and fibrosis in vivo. Overexpression of CFIRL in vitro promoted fibroblast proliferation and aggravated angiotensin II-induced differentiation to myofibroblasts. CFIRL knockdown attenuated these effects. Mechanistically, RNA pull-down assay and gene expression profiling revealed that CFIRL recruited ENO1, a newly identified noncanonical transcriptional factor, to activate IL-6 transcription. IL-6 exerted a paracrine effect on cardiomyocytes to promote cardiac hypertrophy, which can be prevented by CFIRL knockdown. These findings uncover the critical role of CFIRL, a fibroblast-associated lncRNA, in heart failure by facilitating crosstalk between fibroblasts and cardiomyocytes. CFIRL knockdown might be a potent strategy to prevent cardiac remodeling in heart failure, particularly in DCM.


Assuntos
Cardiomiopatia Dilatada , Fibroblastos , Fibrose , Miócitos Cardíacos , RNA Longo não Codificante , Animais , Humanos , Camundongos , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Diferenciação Celular , Proliferação de Células , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Interleucina-6/metabolismo , Interleucina-6/genética , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miofibroblastos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
13.
Mol Biomed ; 5(1): 18, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38755442

RESUMO

The coronavirus disease (COVID-19) pandemic has continued for 5 years. Sporadic cases continue to occur in different locations. Type 2 diabetes mellitus (T2DM) is associated with a high risk of a poor prognosis in patients with COVID-19. Successful control of blood glucose levels can effectively decrease the risks of severe infections and mortality. However, the effects of different treatments were reported differently and even adversely. This retrospective study included 4,922 patients who have been diagnosed as COVID-19 and T2DM from 138 Hubei hospitals. The clinical characteristics and outcomes were compared and calculated their risk for death using multivariate Cox regression and Kaplan-Meier curves. After adjustment of age, sex, comorbidities, and in-hospital medications, metformin and alpha-glucosidase inhibitor (AGI) use performed lower all-cause mortality (adjusted hazard ratio [HR], 0.41; 95% confidence interval [CI]: 0.24-0.71; p = 0.001 for metformin; 0.53, 0.35-0.80, p = 0.002 for AGIs), while insulin use was associated with increased all-cause mortality (adjusted HR, 2.07, 95% CI, 1.61-2.67, p < 0.001). After propensity score-matched (PSM) analysis, adjusted HRs for insulin, metformin, and AGIs associated with all-cause mortality were 1.32 (95% CI, 1.03-1.81; p = 0.012), 0.48 (95% CI, 0.23-0.83, p = 0.014), and 0.59 (95% CI, 0.35-0.98, p = 0.05). Therefore, metformin and AGIs might be more suitable for patients with COVID-19 and T2DM while insulin might be used with caution.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 2 , Hipoglicemiantes , Metformina , Humanos , Diabetes Mellitus Tipo 2/mortalidade , Diabetes Mellitus Tipo 2/tratamento farmacológico , COVID-19/mortalidade , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , China/epidemiologia , Idoso , Metformina/uso terapêutico , Hipoglicemiantes/uso terapêutico , SARS-CoV-2 , Insulina/uso terapêutico , Inibidores de Glicosídeo Hidrolases/uso terapêutico , Adulto
14.
Front Pharmacol ; 15: 1358256, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628644

RESUMO

Arachidonic acid (AA) has three main metabolic pathways: the cycloxygenases (COXs) pathway, the lipoxygenases (LOXs) pathway, and the cytochrome P450s (CYPs) pathway. AA produces epoxyeicosatrienoic acids (EETs) through the CYPs pathway. EETs are very unstable in vivo and can be degraded in seconds to minutes. EETs have multiple degradation pathways, but are mainly degraded in the presence of soluble epoxide hydrolase (sEH). sEH is an enzyme of bifunctional nature, and current research focuses on the activity of its C-terminal epoxide hydrolase (sEH-H), which hydrolyzes the EETs to the corresponding inactive or low activity diol. Previous studies have reported that EETs have cardiovascular protective effects, and the activity of sEH-H plays a role by degrading EETs and inhibiting their protective effects. The activity of sEH-H plays a different role in different cells, such as inhibiting endothelial cell proliferation and migration, but promoting vascular smooth muscle cell proliferation and migration. Therefore, it is of interest whether the activity of sEH-H is involved in the initiation and progression of cardiovascular diseases by affecting the function of different cells through EETs.

15.
Europace ; 26(4)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38584395

RESUMO

AIMS: A few studies have reported the effect and safety of pulsed field ablation (PFA) catheters for ablating atrial fibrillation (AF), which were mainly based on basket-shaped or flower-shaped designs. However, the clinical application of a circular-shaped multi-electrode catheter with magnetic sensors is very limited. To study the efficacy and safety of a PFA system in patients with paroxysmal AF using a circular-shaped multi-electrode catheter equipped with magnetic sensors for pulmonary vein isolation (PVI). METHODS AND RESULTS: A novel proprietary bipolar PFA system was used for PVI, which utilized a circular-shaped multi-electrode catheter with magnetic sensors and allowed for three-dimensional model reconstruction, mapping, and ablation in one map. To evaluate the efficacy, efficiency, and safety of this PFA system, a prospective, multi-centre, single-armed, pre-market clinical study was performed. From July 2021 to December 2022, 151 patients with paroxysmal AF were included and underwent PVI. The study examined procedure time, immediate success rate, procedural success rate at 12 months, and relevant complications. In all 151 patients, all the pulmonary veins were acutely isolated using the studied system. Pulsed field ablation delivery was 78.4 ± 41.8 times and 31.3 ± 16.7 ms per patient. Skin-to-skin procedure time was 74.2 ± 29.8 min, and fluoroscopy time was 13.1 ± 7.6 min. The initial 11 (7.2%) cases underwent procedures with deep sedation anaesthesia, and the following cases underwent local anaesthesia. In the initial 11 cases, 4 cases (36.4%) presented transient vagal responses, and the rest were all successfully preventatively treated with atropine injection and rapid fluid infusion. No severe complications were found during or after the procedure. During follow-up, 3 cases experienced atrial flutter, and 11 cases had AF recurrence. The estimated 12-month Kaplan-Meier of freedom from arrhythmia was 88.4%. CONCLUSION: The PFA system, comprised of a circular PFA catheter with magnetic sensors, could rapidly achieve PVI under three-dimensional guidance and demonstrated excellent safety with comparable effects.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Veias Pulmonares , Humanos , Veias Pulmonares/cirurgia , Resultado do Tratamento , Estudos Prospectivos , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/cirurgia , Catéteres , Ablação por Cateter/efeitos adversos , Ablação por Cateter/métodos , Fenômenos Magnéticos , Recidiva
16.
Circ Res ; 134(10): 1330-1347, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557119

RESUMO

BACKGROUND: Tetraspanin CD151 is highly expressed in endothelia and reinforces cell adhesion, but its role in vascular inflammation remains largely unknown. METHODS: In vitro molecular and cellular biological analyses on genetically modified endothelial cells, in vivo vascular biological analyses on genetically engineered mouse models, and in silico systems biology and bioinformatics analyses on CD151-related events. RESULTS: Endothelial ablation of Cd151 leads to pulmonary and cardiac inflammation, severe sepsis, and perilous COVID-19, and endothelial CD151 becomes downregulated in inflammation. Mechanistically, CD151 restrains endothelial release of proinflammatory molecules for less leukocyte infiltration. At the subcellular level, CD151 determines the integrity of multivesicular bodies/lysosomes and confines the production of exosomes that carry cytokines such as ANGPT2 (angiopoietin-2) and proteases such as cathepsin-D. At the molecular level, CD151 docks VCP (valosin-containing protein)/p97, which controls protein quality via mediating deubiquitination for proteolytic degradation, onto endolysosomes to facilitate VCP/p97 function. At the endolysosome membrane, CD151 links VCP/p97 to (1) IFITM3 (interferon-induced transmembrane protein 3), which regulates multivesicular body functions, to restrain IFITM3-mediated exosomal sorting, and (2) V-ATPase, which dictates endolysosome pH, to support functional assembly of V-ATPase. CONCLUSIONS: Distinct from its canonical function in strengthening cell adhesion at cell surface, CD151 maintains endolysosome function by sustaining VCP/p97-mediated protein unfolding and turnover. By supporting protein quality control and protein degradation, CD151 prevents proteins from (1) buildup in endolysosomes and (2) discharge through exosomes, to limit vascular inflammation. Also, our study conceptualizes that balance between degradation and discharge of proteins in endothelial cells determines vascular information. Thus, the IFITM3/V-ATPase-tetraspanin-VCP/p97 complexes on endolysosome, as a protein quality control and inflammation-inhibitory machinery, could be beneficial for therapeutic intervention against vascular inflammation.


Assuntos
COVID-19 , Endossomos , Lisossomos , Tetraspanina 24 , Animais , Lisossomos/metabolismo , Tetraspanina 24/metabolismo , Tetraspanina 24/genética , Humanos , Camundongos , COVID-19/metabolismo , COVID-19/imunologia , COVID-19/patologia , Endossomos/metabolismo , Camundongos Knockout , Vasculite/metabolismo , Camundongos Endogâmicos C57BL , SARS-CoV-2 , Inflamação/metabolismo , Inflamação/patologia , Sepse/metabolismo
17.
Mol Ther ; 32(5): 1578-1594, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38475992

RESUMO

Heart failure (HF) is manifested by transcriptional and posttranscriptional reprogramming of critical genes. Multiple studies have revealed that microRNAs could translocate into subcellular organelles such as the nucleus to modify gene expression. However, the functional property of subcellular Argonaute2 (AGO2), the core member of the microRNA machinery, has remained elusive in HF. AGO2 was found to be localized in both the cytoplasm and nucleus of cardiomyocytes, and robustly increased in the failing hearts of patients and animal models. We demonstrated that nuclear AGO2 rather than cytosolic AGO2 overexpression by recombinant adeno-associated virus (serotype 9) with cardiomyocyte-specific troponin T promoter exacerbated the cardiac dysfunction in transverse aortic constriction (TAC)-operated mice. Mechanistically, nuclear AGO2 activates the transcription of ANKRD1, encoding ankyrin repeat domain-containing protein 1 (ANKRD1), which also has a dual function in the cytoplasm as part of the I-band of the sarcomere and in the nucleus as a transcriptional cofactor. Overexpression of nuclear ANKRD1 recaptured some key features of cardiac remodeling by inducing pathological MYH7 activation, whereas cytosolic ANKRD1 seemed cardioprotective. For clinical practice, we found ivermectin, an antiparasite drug, and ANPep, an ANKRD1 nuclear location signal mimetic peptide, were able to prevent ANKRD1 nuclear import, resulting in the improvement of cardiac performance in TAC-induced HF.


Assuntos
Proteínas Argonautas , Modelos Animais de Doenças , Insuficiência Cardíaca , Miócitos Cardíacos , Proteínas Repressoras , Animais , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/patologia , Camundongos , Humanos , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Miócitos Cardíacos/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Remodelação Ventricular , Núcleo Celular/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Regulação da Expressão Gênica , Masculino , Dependovirus/genética , Transcrição Gênica
18.
Med ; 5(5): 414-431.e5, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38492571

RESUMO

BACKGROUND: Early diagnosis of atrial fibrillation (AF) is important for preventing stroke and other complications. Predicting AF risk in advance can improve early diagnostic efficiency. Deep learning has been used for disease risk prediction; however, it lacks adherence to evidence-based medicine standards. Identifying the underlying mechanisms behind disease risk prediction is important and required. METHODS: We developed an explainable deep learning model called HBBI-AI to predict AF risk using only heart beat-to-beat intervals (HBBIs) during sinus rhythm. We proposed a possible AF mechanism based on the model's explainability and verified this conjecture using confirmed AF risk factors while also examining new AF risk factors. Finally, we investigated the changes in clinicians' ability to predict AF risk using only HBBIs before and after learning the model's explainability. FINDINGS: HBBI-AI consistently performed well across large in-house and external public datasets. HBBIs with large changes or extreme stability were critical predictors for increased AF risk, and the underlying cause was autonomic imbalance. We verified various AF risk factors and discovered that autonomic imbalance was associated with all these factors. Finally, cardiologists effectively understood and learned from these findings to improve their abilities in AF risk prediction. CONCLUSIONS: HBBI-AI effectively predicted AF risk using only HBBI information through evaluating autonomic imbalance. Autonomic imbalance may play an important role in many risk factors of AF rather than in a limited number of risk factors. FUNDING: This study was supported in part by the National Key R&D Program and the National Natural Science Foundation of China.


Assuntos
Fibrilação Atrial , Aprendizado Profundo , Frequência Cardíaca , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/fisiopatologia , Humanos , Medição de Risco , Frequência Cardíaca/fisiologia , Masculino , Fatores de Risco , Feminino , Inteligência Artificial , Eletrocardiografia/métodos , Idoso , Pessoa de Meia-Idade , Diagnóstico Precoce
19.
Sci Rep ; 14(1): 5906, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467760

RESUMO

Despite the progressive decline in the virulence of the novel coronavirus, there has been no corresponding reduction in its associated hospital mortality. Our aim was to redefine an accurate predictor of mortality risk in COVID-19 patients, enabling effective management and resource allocation. We conducted a retrospective analysis of 2917 adult Chinese patients diagnosed with COVID-19 who were admitted to our hospital during two waves of epidemics, involving the Beta and Omicron variants. Upon admission, NT-proBNP levels were measured, and we collected demographic, clinical, and laboratory data. We introduced a new concept called the NT-proBNP ratio, which measures the NT-proBNP level relative to age-specific maximum normal values. The primary outcome was all-cause in-hospital mortality. Our analysis revealed a higher in-hospital mortality rate in 2022, as shown by the Kaplan-Meier Survival Curve. To assess the predictive value of the NT-proBNP ratio, we employed the time-dependent receiver operating characteristic (ROC) curve. Notably, the NT-proBNP ratio emerged as the strongest predictor of mortality in adult Chinese hospitalized COVID-19 patients (area under the curve, AUC = 0.826; adjusted hazard ratio [HR], 3.959; 95% confidence interval [CI] 3.001-5.221; P < 0.001). This finding consistently held true for both the 2020 and 2022 subgroups. The NT-proBNP ratio demonstrates potential predictive capability compared to several established risk factors, including NT-proBNP, hsCRP, and neutrophil-to-lymphocyte ratio, when it comes to forecasting in-hospital mortality among adult Chinese patients with COVID-19.Trial registration Clinical Trial Registration: www.clinicaltrials.gov NCT05615792.


Assuntos
COVID-19 , Adulto , Humanos , Biomarcadores , China/epidemiologia , Peptídeo Natriurético Encefálico , Fragmentos de Peptídeos , Prognóstico , Estudos Retrospectivos , Curva ROC , SARS-CoV-2
20.
Front Med ; 18(1): 31-45, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38424375

RESUMO

Phenylacetylglutamine (PAGln) is an amino acid derivate that comes from the amino acid phenylalanine. There are increasing studies showing that the level of PAGln is associated with the risk of different cardiovascular diseases. In this review, we discussed the metabolic pathway of PAGln production and the quantitative measurement methods of PAGln. We summarized the epidemiological evidence to show the role of PAGln in diagnostic and prognostic value in several cardiovascular diseases, such as heart failure, coronary heart disease/atherosclerosis, and cardiac arrhythmia. The underlying mechanism of PAGln is now considered to be related to the thrombotic potential of platelets via adrenergic receptors. Besides, other possible mechanisms such as inflammatory response and oxidative stress could also be induced by PAGln. Moreover, since PAGln is produced across different organs including the intestine, liver, and kidney, the cross-talk among multiple organs focused on the function of this uremic toxic metabolite. Finally, the prognostic value of PAGln compared to the classical biomarker was discussed and we also highlighted important gaps in knowledge and areas requiring future investigation of PAGln in cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Microbioma Gastrointestinal , Glutamina/análogos & derivados , Trombose , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA