Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(15)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39125930

RESUMO

Biotic and abiotic stresses have already seriously restricted the growth and development of Pinus massoniana, thereby influencing the quality and yield of its wood and turpentine. Recent studies have shown that C2H2 zinc finger protein transcription factors play an important role in biotic and abiotic stress response. However, the members and expression patterns of C2H2 TFs in response to stresses in P. massoniana have not been performed. In this paper, 57 C2H2 zinc finger proteins of P. massoniana were identified and divided into five subgroups according to a phylogenetic analysis. In addition, six Q-type PmC2H2-ZFPs containing the plant-specific motif 'QALGGH' were selected for further study under different stresses. The findings demonstrated that PmC2H2-ZFPs exhibit responsiveness towards various abiotic stresses, including drought, NaCl, ABA, PEG, H2O2, etc., as well as biotic stress caused by the pine wood nematode. In addition, PmC2H2-4 and PmC2H2-20 were nuclear localization proteins, and PmC2H2-20 was a transcriptional activator. PmC2H2-20 was selected as a potential transcriptional regulator in response to various stresses in P. massoniana. These findings laid a foundation for further study on the role of PmC2H2-ZFPs in stress tolerance.


Assuntos
Dedos de Zinco CYS2-HIS2 , Regulação da Expressão Gênica de Plantas , Filogenia , Pinus , Proteínas de Plantas , Estresse Fisiológico , Fatores de Transcrição , Pinus/genética , Pinus/parasitologia , Pinus/metabolismo , Estresse Fisiológico/genética , Dedos de Zinco CYS2-HIS2/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma , Perfilação da Expressão Gênica , Dedos de Zinco
2.
Int J Mol Sci ; 25(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39063230

RESUMO

N6-methyladenosine (m6A) RNA modification is the most prevalent form of RNA methylation and plays a crucial role in plant development. However, our understanding of m6A modification in Masson pine (Pinus massoniana Lamb.) remains limited. In this study, a complete analysis of m6A writers, erasers, and readers in Masson pine was performed, and 22 m6A regulatory genes were identified in total, including 7 m6A writers, 7 m6A erases, and 8 readers. Phylogenetic analysis revealed that all m6A regulators involved in Masson pine could be classified into three distinct groups based on their domains and motifs. The tissue expression analysis revealed that the m6A regulatory gene may exert a significant influence on the development of reproductive organs and leaves in Masson pine. Moreover, the results from stress and hormone expression analysis indicated that the m6A regulatory gene in Masson pine might be involved in drought stress response, ABA-signaling-pathway activation, as well as resistance to Monochamus alternatus. This study provided valuable and anticipated insights into the regulatory genes of m6A modification and their potential epigenetic regulatory mechanisms in Masson pine.


Assuntos
Adenosina , Regulação da Expressão Gênica de Plantas , Filogenia , Pinus , Estresse Fisiológico , Transcriptoma , Pinus/genética , Pinus/metabolismo , Estresse Fisiológico/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Epigênese Genética
3.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612806

RESUMO

N6-methyladenosine (m6A) is essential for RNA metabolism in cells. The YTH domain, conserved in the kingdom of Eukaryotes, acts as an m6A reader that binds m6A-containing RNA. In plants, the YTH domain is involved in plant hormone signaling, stress response regulation, RNA stability, translation, and differentiation. However, little is known about the YTH genes in tea-oil tree, which can produce edible oil with high nutritional value. This study aims to identify and characterize the YTH domains within the tea-oil tree (Camellia chekiangoleosa Hu) genome to predict their potential role in development and stress regulation. In this study, 10 members of the YTH family containing the YTH domain named CchYTH1-10 were identified from C. chekiangoleosa. Through analysis of their physical and chemical properties and prediction of subcellular localization, it is known that most family members are located in the nucleus and may have liquid-liquid phase separation. Analysis of cis-acting elements in the CchYTH promoter region revealed that these genes could be closely related to abiotic stress and hormones. The results of expression profiling show that the CchYTH genes were differentially expressed in different tissues, and their expression levels change under drought stress. Overall, these findings could provide a foundation for future research regarding CchYTHs in C. chekiangoleosa and enrich the world in terms of epigenetic mark m6A in forest trees.


Assuntos
Camellia , Camellia/genética , Diferenciação Celular , Secas , RNA , Chá
4.
Int J Mol Sci ; 25(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38338907

RESUMO

WUSCHEL-related homeobox (WOX) transcription factors (TFs) play a crucial role in regulating plant development and responding to various abiotic stresses. However, the members and functions of WOX proteins in Pinus massoniana remain unclear. In this study, a total of 11 WOX genes were identified, and bioinformatics methods were used for preliminary identification and analysis. The phylogenetic tree revealed that most PmWOXs were distributed in ancient and WUS clades, with only one member found in the intermediate clade. We selected four highly conserved WOX genes within plants for further expression analysis. These genes exhibited expressions across almost all tissues, while PmWOX2, PmWOX3, and PmWOX4 showed high expression levels in the callus, suggesting their potential involvement in specific functions during callus development. Expression patterns under different abiotic stresses indicated that PmWOXs could participate in resisting multiple stresses in P. massoniana. The identification and preliminary analysis of PmWOXs lay the foundation for further research on analyzing the resistance molecular mechanism of P. massoniana to abiotic stresses.


Assuntos
Pinus , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Família Multigênica , Filogenia , Pinus/genética , Pinus/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
5.
IEEE Trans Pattern Anal Mach Intell ; 46(6): 4460-4475, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38261485

RESUMO

Noisy labels are often encountered in datasets, but learning with them is challenging. Although natural discrepancies between clean and mislabeled samples in a noisy category exist, most techniques in this field still gather them indiscriminately, which leads to their performances being partially robust. In this paper, we reveal both empirically and theoretically that the learning robustness can be improved by assuming deep features with the same labels follow a student distribution, resulting in a more intuitive method called student loss. By embedding the student distribution and exploiting the sharpness of its curve, our method is naturally data-selective and can offer extra strength to resist mislabeled samples. This ability makes clean samples aggregate tightly in the center, while mislabeled samples scatter, even if they share the same label. Additionally, we employ the metric learning strategy and develop a large-margin student (LT) loss for better capability. It should be noted that our approach is the first work that adopts the prior probability assumption in feature representation to decrease the contributions of mislabeled samples. This strategy can enhance various losses to join the student loss family, even if they have been robust losses. Experiments demonstrate that our approach is more effective in inaccurate supervision. Enhanced LT losses significantly outperform various state-of-the-art methods in most cases. Even huge improvements of over 50% can be obtained under some conditions.

6.
Int J Mol Sci ; 24(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37958919

RESUMO

Pinus massoniana is an important coniferous tree species for barren mountain afforestation with enormous ecological and economic significance. It has strong adaptability to the environment. TEOSINTE BRANCHED 1/CYCLOIDEA/PCF (TCP) transcription factors (TFs) play crucial roles in plant stress response, hormone signal transduction, and development processes. At present, TCP TFs have been widely studied in multiple plant species, but research in P. massoniana has not been carried out. In this study, 13 PmTCP TFs were identified from the transcriptomes of P. massoniana. The phylogenetic results revealed that these PmTCP members were divided into two categories: Class I and Class II. Each PmTCP TF contained a conserved TCP domain, and the conserved motif types and numbers were similar in the same subgroup. According to the transcriptional profiling analysis under drought stress conditions, it was found that seven PmTCP genes responded to drought treatment to varying degrees. The qRT-PCR results showed that the majority of PmTCP genes were significantly expressed in the needles and may play a role in the developmental stage. Meanwhile, the PmTCPs could respond to several stresses and hormone treatments at different levels, which may be important for stress resistance. In addition, PmTCP7 and PmTCP12 were nuclear localization proteins, and PmTCP7 was a transcriptional suppressor. These results will help to explore the regulatory factors related to the growth and development of P. massoniana, enhance its stress resistance, and lay the foundation for further exploration of the physiological effects on PmTCPs.


Assuntos
Pinus , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Transcriptoma , Filogenia , Pinus/genética , Pinus/metabolismo , Regulação da Expressão Gênica de Plantas , Hormônios/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
7.
Front Microbiol ; 14: 1264670, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029152

RESUMO

Introduction: The average carbon storage of Pinus massoniana is much higher than the average carbon storage of Chinese forests, an important carbon sink tree species in subtropical regions of China. However, there are few studies on the differences in rhizosphere microorganisms of P. massoniana with different carbon storages. Methods: To clarify the relationships between plant carbon storage level, environmental parameters and microbial community structure, we identified three carbon storage levels from different P. massoniana provenances and collected rhizosphere soil samples. We determined chemical properties of soil, extracellular enzyme activity, and microbial community structures at different carbon storage levels and examined how soil factors affect rhizosphere microorganisms under different carbon storage levels. Results: The results revealed that soil organic carbon (SOC), nitrate nitrogen (NO3--N), ammonium nitrogen (NH4+-N) contents all increased with increasing carbon storage levels, while pH decreased accordingly. In contrast, the available phosphorus (AP) content did not change significantly. The soil AP content was within the range of 0.91 ~ 1.04 mg/kg. The microbial community structure of P. massoniana changed with different carbon storage, with Acidobacteria (44.27%), Proteobacteria (32.57%), and Actinobacteria (13.43%) being the dominant bacterial phyla and Basidiomycota (73.36%) and Ascomycota (24.64%) being the dominant fungal phyla across the three carbon storage levels. Soil fungi were more responsive to carbon storage than bacteria in P. massoniana. C/N, NH4+-N, NO3--N, and SOC were the main drivers (p < 0.05) of changes in rhizosphere microbial communities. Discussion: The results revealed that in the rhizosphere there were significant differences in soil carbon cycle and microorganism nutrient preferences at different carbon storages of P. massoniana provenance, which were significantly related to the changes in rhizosphere microbial community structure. Jiangxi Anyuan (AY) provenance is more suitable for the construction of high carbon storage plantation.

8.
Int J Mol Sci ; 24(20)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37894868

RESUMO

N6-methyladenosine (m6A) is becoming one of the most important RNA modifications in plant growth and development, including defense, cell differentiation, and secondary metabolism. YT521-B homology (YTH) domain-containing RNA-binding proteins, identified as m6A readers in epitranscriptomics, could affect the fate of m6A-containing RNA by recognizing and binding the m6A site. Therefore, the identification and study of the YTH gene family in Liriodendron chinense (L. chinense) can provide a molecular basis for the study of the role of m6A in L. chinense, but studies on the YTH gene in L. chinense have not been reported. We identified nine putative YTH gene models in the L. chinense genome, which can be divided into DF subgroups and DC subgroups. Domain sequence analysis showed that the LcYTH protein had high sequence conservation. A LcYTH aromatic cage bag is composed of tryptophan and tryptophan (WWW). PrLDs were found in the protein results of YTH, suggesting that these genes may be involved in the process of liquid-liquid phase separation. LcYTH genes have different tissue expression patterns, but the expression of LcYTHDF2 is absolutely dominant in all tissues. In addition, the expression of the LcYTH genes is changed in response to ABA and MeJA. In this study, We identified and analyzed the expression pattern of LcYTH genes. Our results laid a foundation for further study of the function of the LcYTH gene and further genetic and functional analyses of m6A RNA modification in forest trees.


Assuntos
Liriodendron , Liriodendron/metabolismo , Triptofano , Adenosina/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo
9.
Int J Mol Sci ; 24(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37446285

RESUMO

Pinus massoniana is a major fast-growing timber tree species planted in arid areas of south China, which has a certain drought-resistant ability. However, severe drought and long-term water shortage limit its normal growth and development. Therefore, in this study, physiological indices, and the transcriptome sequencing and cloning of AP2/ERF transcription factor of P. massonsiana were determined to clarify its molecular mechanism of drought stress. The results showed that stomatal conductance (Gs) content was significantly decreased, and superoxide dismutase (SOD) activity, and malondialdehyde (MDA) and abscisic acid (ABA) content were significantly increased under drought stress. Transcriptomic analysis revealed that compared to the control, 9, 3550, and 4142 unigenes with differential expression were identified by comparing plants subjected to light, moderate or severe drought. AP2/ERF with high expression was screened out for cloning. To investigate the biological functions of ERF1, it was over-expressed in wild-type Populus davdianaand × P. bolleana via the leaf disc method. Under drought stress, compared to wild-type plants, ERF1 over-expressing poplar lines (OE) maintained a higher photosynthetic rate and growth, while the transpiration rate and stomatal conductance significantly decreased and water use efficiency was improved, indicating that drought tolerance was enhanced. This study provides an insight into the molecular mechanism of drought stress adaptation in P. massoniana.


Assuntos
Pinus , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma , Secas , Pinus/genética , Pinus/metabolismo , Água/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
Genes (Basel) ; 13(9)2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36140811

RESUMO

CCCH-type zinc finger proteins play an important role in multiple biotic and abiotic stresses. More and more reports about CCCH functions in plant development and stress responses have appeared over the past few years, focusing especially on tandem CCCH zinc finger proteins (TZFs). However, this has not been reported in Pinaceae. In this study, we identified 46 CCCH proteins, including 6 plant TZF members in Pinus massoniana, and performed bioinformatic analysis. According to RT-PCR analysis, we revealed the expression patterns of five RR-TZF genes under different abiotic stresses and hormone treatments. Meanwhile, tissue-specific expression analysis suggested that all genes were mainly expressed in needles. Additionally, RR-TZF genes showed transcriptional activation activity in yeast. The results in this study will be beneficial in improving the stress resistance of P. massoniana and facilitating further studies on the biological and molecular functions of CCCH zinc finger proteins.


Assuntos
Regulação da Expressão Gênica de Plantas , Pinus , Hormônios , Pinus/genética , Pinus/metabolismo , Proteínas de Plantas/metabolismo , Transcriptoma , Dedos de Zinco/genética
11.
IEEE Trans Pattern Anal Mach Intell ; 44(12): 8796-8811, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34648433

RESUMO

In partial label learning, a multi-class classifier is learned from the ambiguous supervision where each training example is associated with a set of candidate labels among which only one is valid. An intuitive way to deal with this problem is label disambiguation, i.e., differentiating the labeling confidences of different candidate labels so as to try to recover ground-truth labeling information. Recently, feature-aware label disambiguation has been proposed which utilizes the graph structure of feature space to generate labeling confidences over candidate labels. Nevertheless, the existence of noises and outliers in training data makes the graph structure derived from original feature space less reliable. In this paper, a novel partial label learning approach based on adaptive graph guided disambiguation is proposed, which is shown to be more effective in revealing the intrinsic manifold structure among training examples. Other than the sequential disambiguation-then-induction learning strategy, the proposed approach jointly performs adaptive graph construction, candidate label disambiguation and predictive model induction with alternating optimization. Furthermore, we consider the particular human-in-the-loop framework in which a learner is allowed to actively query some ambiguously labeled examples for manual disambiguation. Extensive experiments clearly validate the effectiveness of adaptive graph guided disambiguation for learning from partial label examples.


Assuntos
Algoritmos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA