RESUMO
OBJECTIVE: Sodium glucose cotransporter 2 (SGLT2) inhibitors significantly improve cardiovascular outcomes in diabetic patients; however, the mechanism is unclear. We hypothesized that dapagliflozin improves cardiac outcomes via beneficial effects on systemic and cardiac inflammation and cardiac fibrosis. RESEARCH AND DESIGN METHODS: This randomized placebo-controlled clinical trial enrolled 62 adult patients (mean age 62, 17% female) with type 2 diabetes (T2D) without known heart failure. Subjects were randomized to 12 months of daily 10 mg dapagliflozin or placebo. For all patients, blood/plasma samples and cardiac magnetic resonance imaging (CMRI) were obtained at time of randomization and at the end of 12 months. Systemic inflammation was assessed by plasma IL-1B, TNFα, IL-6 and ketone levels and PBMC mitochondrial respiration, an emerging marker of sterile inflammation. Global myocardial strain was assessed by feature tracking; cardiac fibrosis was assessed by T1 mapping to calculate extracellular volume fraction (ECV); and cardiac tissue inflammation was assessed by T2 mapping. RESULTS: Between the baseline and 12-month time point, plasma IL-1B was reduced (- 1.8 pg/mL, P = 0.003) while ketones were increased (0.26 mM, P = 0.0001) in patients randomized to dapagliflozin. PBMC maximal oxygen consumption rate (OCR) decreased over the 12-month period in the placebo group but did not change in patients receiving dapagliflozin (- 158.9 pmole/min/106 cells, P = 0.0497 vs. - 5.2 pmole/min/106 cells, P = 0.41), a finding consistent with an anti-inflammatory effect of SGLT2i. Global myocardial strain, ECV and T2 relaxation time did not change in both study groups. GOV REGISTRATION: NCT03782259.
Assuntos
Compostos Benzidrílicos , Biomarcadores , Diabetes Mellitus Tipo 2 , Glucosídeos , Mediadores da Inflamação , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Compostos Benzidrílicos/uso terapêutico , Compostos Benzidrílicos/efeitos adversos , Glucosídeos/uso terapêutico , Glucosídeos/efeitos adversos , Feminino , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Masculino , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/efeitos adversos , Pessoa de Meia-Idade , Idoso , Resultado do Tratamento , Mediadores da Inflamação/sangue , Biomarcadores/sangue , Fatores de Tempo , Anti-Inflamatórios/uso terapêutico , Fibrose , Inflamação/tratamento farmacológico , Inflamação/sangue , Inflamação/diagnóstico , Método Duplo-Cego , Miocárdio/patologia , Miocárdio/metabolismo , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/prevenção & controle , Cardiomiopatias Diabéticas/diagnóstico por imagem , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/sangueRESUMO
The mitochondrial dysfunction characteristic of heart failure (HF) is associated with changes in intracellular nicotinamide adenine dinucleotide (NAD+) and NADH levels. Raising NAD+ levels with the NAD+ precursor, nicotinamide riboside (NR), may represent a novel HF treatment. In this 30-participant trial of patients with clinically stable HF with reduced ejection fraction, NR, at a dose of 1,000 mg twice daily, appeared to be safe and well tolerated, and approximately doubled whole blood NAD+ levels. Intraindividual NAD+ increases in response to NR correlated with increases in peripheral blood mononuclear cell basal (R 2 = 0.413, P = 0.003) and maximal (R 2 = 0.434, P = 0.002) respiration, and with decreased NLRP3 expression (R 2 = 0.330, P = 0.020). (Nicotinamide Riboside in Systolic Heart Failure; NCT03423342).