Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
J Phys Chem Lett ; : 7840-7849, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052764

RESUMO

In materials science, doping plays a crucial role in manipulating the electronic properties of materials. Conventional screening via a trial-and-error strategy is challenging owing to the enormous chemical space. We proposed a connected convolutional neutral network (CCNN) for quick screening of boron nitrogen (B-N) codoped graphdiyne in terms of band gap. A paired-atomic localized matrix (PALM) descriptor was designed to describe the local chemical environment of materials with the matrix form adapted to a neutral network. An attribution analysis was conducted, and a quantitative relationship between structure and band gap is proposed, which reveals more significant influence of B-N doping at sp2 hybridized sites than at sp hybridized sites on broadening of the band gap of GDY. The accuracy and efficiency of the proposed approach implicate its potential in promoting the design of graphdiyne-based optoelectronic devices and catalysts with expected electronic properties, opening a new avenue for rational design of novel materials.

2.
Phys Chem Chem Phys ; 26(28): 19543-19553, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38979972

RESUMO

Rational design of γ-alumina-based catalysts relies on an extensive understanding of the distribution of hydroxyl groups on the surface of γ-alumina and their physicochemical properties, which remain unclear and challenging to determine experimentally due to the structural complexity. In this work, by means of DFT and thermodynamic calculations, various hydroxylation modes of γ-alumina (110) and (100) surfaces at different OH coverages were evaluated, based on which a thermodynamic model to reflect the relationship between temperature and the surface structure was established and the stable hydroxylation modes under experimental conditions were predicted. This enables us to identify the experimentally measured IR spectra. The effect of hydroxyl coverages on the surface Lewis acidity was then analyzed, showing that the presence of hydroxyl groups could promote the Lewis acidity of neighboring Al sites. This work provides fundamental insights into the molecular level understanding of the surface properties of γ-alumina and benefits the rational design of alumina-based catalysts.

3.
Environ Res ; 261: 119691, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39074775

RESUMO

Algae and macrophytes in lake ecosystems regulate nitrous oxide (N2O) emissions from eutrophic lakes. However, knowledge of diurnal N2O emission patterns from different habitats remains limited. To understand the diurnal patterns and driving mechanisms of N2O emissions from contrasting habitats, continuous in situ observations (72 h) of N2O fluxes from an algae-dominated zone (ADZ) and reed-dominated zone (RDZ) in Lake Taihu were conducted using the Floating Chamber method. The results showed average N2O emission fluxes of 0.15 ± 0.06 and 0.02 ± 0.04 µmol m-2 h-1 in the ADZ and RDZ in autumn, respectively. The significantly higher (p < 0.05) N2O fluxes in the ADZ were mainly attributed to differences in nitrogen (N) levels. The results also showed significant diurnal differences (p < 0.05) in the N2O emission fluxes within the ADZ and RDZ, and daytime fluxes were significantly higher (p < 0.05) than nighttime fluxes. The statistical results indicated that N2O emissions from the ADZ were mainly driven by diurnal variations in N loading and the dissolved oxygen (DO) concentration, and those from the RDZ were more influenced by DO, redox potential, and pH. Finally, we determined the proper time for routine monitoring of N2O flux in the two habitats. Our results highlight the importance of considering diverse habitats and diurnal variations when estimating N2O budgets at a whole-lake scale.

4.
Molecules ; 29(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38930957

RESUMO

The recent few decades witnessed a quick growth in our knowledge in actinoid chemistry, particularly in actinoids' behaviors in catalysis and biologic systems [...].

5.
Environ Sci Technol ; 58(22): 9701-9713, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38780660

RESUMO

Indirect nitrous oxide (N2O) emissions from streams and rivers are a poorly constrained term in the global N2O budget. Current models of riverine N2O emissions place a strong focus on denitrification in groundwater and riverine environments as a dominant source of riverine N2O, but do not explicitly consider direct N2O input from terrestrial ecosystems. Here, we combine N2O isotope measurements and spatial stream network modeling to show that terrestrial-aquatic interactions, driven by changing hydrologic connectivity, control the sources and dynamics of riverine N2O in a mesoscale river network within the U.S. Corn Belt. We find that N2O produced from nitrification constituted a substantial fraction (i.e., >30%) of riverine N2O across the entire river network. The delivery of soil-produced N2O to streams was identified as a key mechanism for the high nitrification contribution and potentially accounted for more than 40% of the total riverine emission. This revealed large terrestrial N2O input implies an important climate-N2O feedback mechanism that may enhance riverine N2O emissions under a wetter and warmer climate. Inadequate representation of hydrologic connectivity in observations and modeling of riverine N2O emissions may result in significant underestimations.


Assuntos
Hidrologia , Óxido Nitroso , Rios , Rios/química , Água Subterrânea/química , Ecossistema , Nitrificação , Solo/química , Monitoramento Ambiental
6.
Inorg Chem ; 63(18): 8206-8214, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38647176

RESUMO

The accessibility of multiple valence states of americium (Am) inspired redox-based protocols aimed at efficient separation of trivalent Am (Am3+) from trivalent lanthanides (Ln3+) alternative to the traditional liquid-liquid extraction. This requires an extensive understanding of the coordination chemistry of Am in its various accessible valence states in the aqueous phase. In this work, by means of DFT calculations, the coordination of AmIII-VI with five typical N-donor ligands, i.e., terpyridine (tpy), bispyrazinylpyridine (dpp), bistriazinylpyridine (BTP), bistriazinyl bipyridine (BTBP), and bistrazinyl phenanthroline (BTPhen), was studied in terms of energy and topological analysis. The results show that the exchange of aqua ligands of hydrated ions by N-donor ligands is an entropy-driven process and enthalpically unfavorable. Topological analysis suggests a distinct mechanism of BTP to modulate the redox potential of Am(III) in that BTP can assist the relay of the leaving electron of AmIII, while the other N-donor ligands can detain the oxidation of Am by offering their electron instead. This comparative study enriches our understanding of the coordination chemistry of high-valent Am with N-donor ligands and recommends the ligand design toward the modulation of redox potentials of hydrated Am(III) ions.

7.
Macromol Rapid Commun ; 45(12): e2300715, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38539063

RESUMO

The raw materials of Poly(ethylene terephthalate) (PET) are derived from petroleum-based resources, which are no sustainable. Therefore, previous researchers introduced biomass-derived 2,5-tetrahydrofurfuryl dimethanol (THFDM) into PET. However, its heat resistance has decreased compared to PET. In this paper, a novel bio-based copolyester, poly(ethylene glycol-co-2,5-tetrahydrofuran dimethanol-co-isosorbide terephthalate) (PEIFT), is prepared by introducing biomass-derived isosorbide (ISB) and THFDM into the PET chains through melting copolymerization process. With the introduction of ISB content, copolyesters' hydrophilicity and rigidity improve. Compared to PET, glass transition temperature (Tg) increases by over 5 °C. In addition, the toughness and spinning performance of PEIFT have also been improved as a result of the addition of THFDM components. The hydrophobicity of PEIFTs electrospinning is greatly improved, with a contact angle exceeding 135°. Finally, due to the good hydrophobicity of PEIFTs nanofibers, they have potential application value in the manufacture of hydrophobic nanofiber and filter films. Given its biomass source and excellent performance, they make it easier to replace materials derived from petroleum.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Nanofibras , Poliésteres , Nanofibras/química , Poliésteres/química , Poliésteres/síntese química , Isossorbida/química , Biomassa , Polietilenotereftalatos/química , Furanos/química
8.
Water Res ; 253: 121220, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38341969

RESUMO

A novel integrated pilot-scale A-stage high rate activated sludge, B-stage short-cut biological nitrogen removal and side-stream enhanced biological phosphorus removal (A/B-shortcut N-S2EBPR) process for treating municipal wastewater was demonstrated with the aim to achieve simultaneous and carbon- and energy-efficient N and P removal. In this studied period, an average of 7.62 ± 2.17 mg-N/L nitrite accumulation was achieved through atypical partial nitrification without canonical known NOB out-selection. Network analysis confirms the central hub of microbial community as Nitrospira, which was one to two orders of magnitude higher than canonical aerobic oxidizing bacteria (AOB) in a B-stage nitrification tank. The contribution of comammox Nitrospira as AOB was evidenced by the increased amoB/nxr ratio and higher ammonia oxidation activity. Furthermore, oligotyping analysis of Nitrospira revealed two dominant sub-clusters (microdiveristy) within the Nitrospira. The relative abundance of oligotype II, which is phylogenetically close to Nitrospira_midas_s_31566, exhibited a positive correlation with nitrite accumulation in the same operational period, suggesting its role as comammox Nitrospira. Additionally, the phylogenetic investigation suggested that heterotrophic organisms from the family Comamonadacea and the order Rhodocyclaceae embedding ammonia monooxygenase and hydroxylamine oxidase may function as heterotrophic nitrifiers. This is the first study that elucidated the impact of integrating the S2EBPR on nitrifying populations with implications on short-cut N removal. The unique conditions in the side-stream reactor, such as low ORP, favorable VFA concentrations and composition, seemed to exert different selective forces on nitrifying populations from those in conventional biological nutrient removal processes. The results provide new insights for integrating EBPR with short-cut N removal process for mainstream wastewater treatment.


Assuntos
Amônia , Nitritos , Filogenia , Oxirredução , Bactérias/genética , Nitrificação
9.
J Phys Chem A ; 128(9): 1656-1664, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38394031

RESUMO

Oxidative dehydrogenation (ODH) of light alkanes is a key process in the oxidative conversion of alkanes to alkenes, oxygenated hydrocarbons, and COx (x = 1,2). Understanding the underlying mechanisms extensively is crucial to keep the ODH under control for target products, e.g., alkenes rather than COx, with minimal energy consumption, e.g., during the alkene production or maximal energy release, e.g., during combustion. In this work, deep potential (DP), a neural network atomic potential developed in recent years, was employed to conduct large-scale accurate reactive dynamic simulations. The model was trained on a sufficient data set obtained at the density functional theory level. The intricate reaction network was elucidated and organized in the form of a hierarchical network to demonstrate the key features of the ODH mechanisms, including the activation of propane and oxygen, the influence of propyl reaction pathways on the propene selectivity, and the role of rapid H2O2 decomposition for sustainable and efficient ODH reactions. The results indicate the more complex reaction mechanism of propane ODH than that of ethane ODH and are expected to provide insights in the ODH catalyst optimization. In addition, this work represents the first application of deep potential in the ODH mechanistic study and demonstrates the ample advantages of DP in the study of mechanism and dynamics of complex systems.

10.
Water Res ; 251: 121050, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241807

RESUMO

While the adsorption/bio-oxidation (A/B) process has been widely studied for carbon capture and shortcut nitrogen (N) removal, its integration with enhanced biological phosphorus (P) removal (EBPR) has been considered challenging and thus unexplored. Here, full-scale pilot testing with an integrated system combining A-stage high-rate activated sludge with B-stage partial (de)nitrification/anammox and side-stream EBPR (HRAS-P(D)N/A-S2EBPR) was conducted treating real municipal wastewater. The results demonstrated that, despite the relatively low influent carbon load, the B-stage P(D)N-S2EBPR system could achieve effective P removal performance, with the carbon supplement and redirection of the A-stage sludge fermentate to the S2EBPR. The novel process configuration design enabled a system shift in carbon flux and distribution for efficient EBPR, and provided unique selective factors for ecological niche partitioning among different key functionally relevant microorganisms including polyphosphate accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs). The combined nitrite from B-stage to S2EBPR and aerobic-anoxic conditions in our HRAS-P(D)N/A-S2EBPR system promoted DPAOs for simultaneous internal carbon-driven denitrification via nitrite and P removal. 16S rRNA gene-based oligotyping analysis revealed high phylogenetic microdiversity within the Accumulibacter population and discovered coexistence of certain oligotypes of Accumulibacter and Competibacter correlated with efficient P removal. Single-cell Raman micro-spectroscopy-based phenotypic profiling showed high phenotypic microdiversity in the active PAO community and the involvement of unidentified PAOs and internal carbon-accumulating organisms that potentially played an important role in system performance. This is the first pilot study to demonstrate that the P(D)N-S2EBPR system could achieve shortcut N removal and influent carbon-independent EBPR simultaneously, and the results provided insights into the effects of incorporating S2EBPR into A/B process on metabolic activities, microbial ecology, and resulted system performance.


Assuntos
Esgotos , Purificação da Água , Desnitrificação , Fósforo/metabolismo , Rios , Nitrogênio , RNA Ribossômico 16S , Filogenia , Nitritos , Projetos Piloto , Reatores Biológicos , Purificação da Água/métodos , Polifosfatos/metabolismo , Carbono
11.
Water Res ; 251: 121089, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38277823

RESUMO

We piloted the incorporation of side-stream enhanced biological phosphorus removal (S2EBPR) with A/B stage short-cut nitrogen removal processes to enable simultaneous carbon-energy-efficient nutrients removal. This unique configuration and system conditions exerted selective force on microbial populations distinct from those in conventional EBPR. Interestingly, effective P removal was achieved with the predominance of Acinetobacter (21.5 ± 0.1 %) with nearly negligible level of known conical PAOs (Ca. Accumulibacter and Tetrasphaera were 0.04 ± 0.10 % and 0.47 ± 0.32 %, respectively). Using a combination of techniques, such as fluorescence in situ hybridization (FISH) coupled with single cell Raman spectroscopy (SCRS), the metabolic tracing of Acinetobacter-like cells exerted PAO-like phenotypic profiling. In addition, comparative metagenomics analysis of the closely related Acinetobacter spp. revealed the EBPR relevant metabolic pathways. Further oligotyping analysis of 16s rRNA V4 region revealed sub-clusters (microdiversity) of the Acinetobacter and revealed that the sub-group (oligo type 1, identical (100 % alignment identity) hits from Acinetobacter_midas_s_49494, and Acinetobacter_midas_s_55652) correlated with EBPR activities parameters, provided strong evidence that the identified Acinetobacter most likely contributed to the overall P removal in our A/B-shortcut N-S2EBPR system. To the best of our knowledge, this is the first study to confirm the in situ EBPR activity of Acinetobacter using combined genomics and SCRS Raman techniques. Further research is needed to identify the specific taxon, and phenotype of the Acinetobacter that are responsible for the P-removal.


Assuntos
Fósforo , Rios , Fósforo/metabolismo , RNA Ribossômico 16S/genética , Hibridização in Situ Fluorescente , Reatores Biológicos , Polifosfatos/metabolismo , Esgotos
12.
Phys Chem Chem Phys ; 26(5): 4125-4134, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38226632

RESUMO

Multinuclear U(VI) species may be dominant in aqueous solutions under environmental conditions, while the structures of the multinuclear U(VI) species on mineral surfaces remain unclear. This work reports the structural and bonding properties of the possible surface complexes of three aqueous multinuclear U(VI) species, i.e., (UO2)2(OH)3+, (UO2)2(OH)22+ and (UO2)3(O)(OH)3+, on the hydroxylated α-SiO2(001) surface based on density functional theory (DFT) calculations. The results show that (UO2)2(OH)22+ and (UO2)3(O)(OH)3+ tend to form end-on structures at SiO(H)SiO(H) sites, whereas (UO2)2(OH)3+ prefers a side-on structure at SiO(H)O(H)-SiO(H)O(H) sites. The main driving forces for the formation of the multinuclear U(VI) surface complexes are electrostatic interactions and partially covalent chemical bonds. The Os-2p orbital hybridizes strongly with U-5f and U-6d orbitals, with a decreasing binding strength in the sequence of (UO2)2(OH)3+ > (UO2)2(OH)22+ > (UO2)3(O)(OH)3+ for the adsorption at the same type of surface sites. For the adsorption of the same multinuclear U(VI) species, the binding energy increases with the deprotonation extent of the identical sites. In addition, hydrogen bonds between surface hydroxyls and coordination waters as well as the acyl oxygen of uranyl moieties contribute to the formation of the multinuclear U(VI) surface complexes. The U-5f electron delocalization of far-side U atoms in the end-on structures of (UO2)2(OH)22+ and (UO2)3(O)(OH)3+ surface complexes also contributes slightly to the overall binding energy. Overall, this study provides insights into the adsorption behavior of multinuclear U(VI) on silica.

13.
Dalton Trans ; 53(2): 601-611, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38063670

RESUMO

To tune the complexation and solvent extraction performance of the ligands with a 1,10-phenanthroline core for trivalent actinides (An3+) and lanthanides (Ln3+), we synthesized two new asymmetric tetradentate ligands with pyrazole and amide groups, i.e., L1 (N,N-diethyl-9-(5-ethyl-1H-pyrazol-3-yl)-1,10-phenanthroline-2-carboxamide) and its analogue L2 with longer alkyl chains (N,N-dihexyl). The complexation of the ligands with Ln3+ was confirmed by 1H NMR titration and X-ray crystallography, and stability constants were measured in methanol by spectrophotometric titration. The asymmetric ligands exhibited an improved performance in terms of selective solvent extraction of Am3+ over Eu3+ in strongly acidic solutions compared to their symmetric analogues. The improved selectivity of the asymmetric ligands was interpreted theoretically by density functional theory simulations. This study implies that combining different functional groups to construct asymmetric ligands may be an efficient way to tune ligand performance with regard to An3+ separation from Ln3+.

14.
Inorg Chem ; 63(2): 923-927, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38156893

RESUMO

Plain simulations and enhanced sampling unveil a novel siderocalin (Scn) recognition mode for An-Ent (where An = actinides and Ent = enterobactin) complexes and identify a "seesaw" relationship between actinide affinity to Ent and Scn recognition to an An-Ent complex. Electrostatic interactions predominantly govern competitive binding in both processes. Additionally, hydrolysis-induced negative charge, water expulsion-driven entropy, and Ent's conformational adaptability collectively enhance high-affinity recognition.

15.
Nanomaterials (Basel) ; 13(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37836310

RESUMO

Direct ascorbic acid fuel cells (DAAFCs) employ biocompatible ascorbic acid (AA) as fuel, allowing convenient storage, transportation, and fueling as well as avoiding fuel crossover. The AA oxidation reaction (AAOR) largely governs the performance of DAAFCs. However, AAOR electrocatalysts currently have low activity, and state-of-the-art ones are limited to carbon black. Herein, we report the synthesis of an unprecedented AAOR electrocatalyst comprising 3.9 ± 1.1 nm CeO2 nanoparticles evenly distributed on carbon black simply by the wet chemical precipitation of Ce(OH)3 and a subsequent heat treatment. The resultant CeO2/C shows a remarkable AAOR activity with a peak current density of 13.1 mA cm-2, which is 1.7 times of that of carbon black (7.67 mA cm-2). According to X-ray photoelectron spectroscopy (XPS), the surface Ce3+ of CeO2 appears to contribute to the AAOR activity. Furthermore, our density functional theory (DFT) calculation reveals that that the proton of the hydroxyl group of AA can easily migrate to the bridging O sites of CeO2, resulting in a faster AAOR with respect to the pristine carbon, -COOH, and -C=O sites of carbon. After an i-t test, CeO2/C loses 17.8% of its initial current density, which is much superior to that of carbon black. CeO2 can capture the electrons generated by the AAOR to protect the -COOH and -C=O sites from being reduced. Finally, DAAFCs fabricated with CeO2/C exhibit a remarkable power density of 41.3 mW cm-2, which is the highest among proton-exchange-membrane-based DAAFCs in the literature.

16.
Molecules ; 28(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37687254

RESUMO

The separation of trivalent actinides and lanthanides is a key step in the sustainable development of nuclear energy, and it is currently mainly realized via liquid-liquid extraction techniques. The underlying mechanism is complicated and remains ambiguous, which hinders the further development of extraction. Herein, to better understand the mechanism of the extraction, the contributing factors for the extraction are discussed (specifically, the sulfur-donating ligand, Cyanex301) by combing molecular dynamics simulations and experiments. This work is expected to contribute to improve our systematic understanding on a molecular scale of the extraction of lanthanides and actinides, and to assist in the extensive studies on the design and optimization of novel ligands with improved performance.

17.
Water Res ; 245: 120540, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37688851

RESUMO

Side-stream enhanced biological phosphorus removal process (S2EBPR) has been demonstrated to improve performance stability and offers a suite of advantages compared to conventional EBPR design. Design and optimization of S2EBPR require modification of the current EBPR models that were not able to fully reflect the metabolic functions of and competition between the polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs) under extended anaerobic conditions as in the S2EBPR conditions. In this study, we proposed and validated an improved model (iEBPR) for simulating PAO and GAO competition that incorporated heterogeneity and versatility in PAO sequential polymer usage, staged maintenance-decay, and glycolysis-TCA pathway shifts. The iEBPR model was first calibrated against bulk batch testing experiment data and proved to perform better than the previous EBPR model for predicting the soluble orthoP, ammonia, biomass glycogen, and PHA temporal profiles in a starvation batch testing under prolonged anaerobic conditions. We further validated the model with another independent set of anaerobic testing data that included high-resolution single-cell and specific population level intracellular polymer measurements acquired with single-cell Raman micro-spectroscopy technique. The model accurately predicted the temporal changes in the intracellular polymers at cellular and population levels within PAOs and GAOs, and further confirmed the proposed mechanism of sequential polymer utilization, and polymer availability-dependent and staged maintenance-decay in PAOs. These results indicate that under extended anaerobic phases as in S2EBPR, the PAOs may gain competitive advantages over GAOs due to the possession of multiple intracellular polymers and the adaptive switching of the anaerobic metabolic pathways that consequently lead to the later and slower decay in PAOs than GAOs. The iEBPR model can be applied to facilitate and optimize the design and operations of S2EBPR for more reliable nutrient removal and recovery from wastewater.

18.
Environ Sci Technol ; 57(35): 13247-13257, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37615362

RESUMO

Enhanced biological phosphorus removal (EBPR) is an economical and sustainable process for phosphorus removal from wastewater. Despite the widespread application of EBPR for low-strength domestic wastewater treatment, limited investigations have been conducted to apply EBPR to the high-strength wastewaters, particularly, the integration of EBPR and the short-cut nitrogen removal process in the one-stage system remains challenging. Herein, we reported a novel proof-of-concept demonstration of integrating EBPR and nitritation (oxidation of ammonium to nitrite) in a one-stage sequencing batch reactor to achieve simultaneous high-strength phosphorus and short-cut nitrogen removal. Excellent EBPR performance of effluent 0.8 ± 1.0 mg P/L and >99% removal efficiency was achieved fed with synthetic high-strength phosphorus wastewater. Long-term sludge acclimation proved that the dominant polyphosphate accumulating organisms (PAOs), Candidatus Accumulibacter, could evolve to a specific subtype that can tolerate the nitrite inhibition as revealed by operational taxonomic unit (OTU)-based oligotyping analysis. The EBPR kinetic and stoichiometric evaluations combined with the amplicon sequencing proved that the Candidatus Competibacter, as the dominant glycogen accumulating organisms (GAOs), could well coexist with PAOs (15.3-24.9% and 14.2-33.1%, respectively) and did not deteriorate the EBPR performance. The nitrification activity assessment, amplicon sequencing, and functional-based gene marker quantification verified that the unexpected nitrite accumulation (10.7-21.0 mg N/L) in the high-strength EBPR system was likely caused by the nitritation process, in which the nitrite-oxidizing bacteria (NOB) were successfully out-selected (<0.1% relative abundance). We hypothesized that the introduction of the anaerobic phase with high VFA concentrations could be the potential selection force for achieving nitritation based on the literature review and our preliminary batch tests. This study sheds light on developing a new feasible technical route for integrating EBPR with short-cut nitrogen removal for efficient high-strength wastewater treatment.


Assuntos
Desnitrificação , Águas Residuárias , Nitritos , Esgotos , Nitrogênio , Fósforo
19.
Environ Sci Technol ; 57(28): 10339-10347, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37399448

RESUMO

Using molecular dynamics simulations, this work targets a molecular understanding on the rigidity and flexibility of fulvic acid (FA) in uranyl sorption on graphene oxide (GO). The simulations demonstrated that both rigid Wang's FA (WFA) and flexible Suwannee River FA (SRFA) can provide multiple sites to cooperate with GO for uranyl sorption and act as "bridges" to connect uranyl and GO to form GO-FA-U (type B) ternary surface complexes. The presence of flexible SRFA was more beneficial to uranyl sorption on GO. The interactions of WFA and SRFA with uranyl were primarily driven by electrostatics, and the electrostatic interaction of SRFA-uranyl was significantly stronger owing to the formation of more complexes. The flexible SRFA could markedly enhance the bonding strength of uranyl with GO by folding itself to provide more sites to coordinate with uranyl. The rigid WFAs tended to be adsorbed on the GO surface in parallel due to π-π interactions, whereas the flexible SRFAs took more slant configurations resulting from intermolecular hydrogen bonds. This work provides new insights into the sorption dynamics, structure, and mechanism and addresses the effect of molecular rigidity and flexibility, with great significance for FA-based remediation strategies of uranium-contaminated sites.


Assuntos
Grafite , Simulação de Dinâmica Molecular , Benzopiranos/química , Grafite/química
20.
Environ Res ; 235: 116546, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37406718

RESUMO

In this study, a lab-scale continuous flow side-stream enhanced biological phosphorus (P) removal (S2EBPR) reactor was operated for 247 days treating synthetic wastewater with influent carbon to phosphorus (C/P) ratio of 25.0 g COD/g P and influent PO43--P of 7.4 ± 0.3 mg P/L. The effect of the return activated sludge (RAS) diversion ratio on S2EBPR reactor was investigated by comparing P removal performance, microbial activity, and community structure. The results showed that the RAS diversion ratio of 8.0%, by yielding a side-stream sludge retention time (SRTSS) of ∼60 h, resulted in the lowest effluent PO43--P concentration of 0.5 ± 0.3 mg P/L. The results of in situ process profiles and ex situ P release and uptake batch tests under different RAS diversion conditions showed that the more anaerobic P release was obtained in the side-stream reactor, the higher the P removal efficiency and EBPR activity were achieved. The stoichiometric ratios observed in EBPR activity tests indicated a polyphosphate accumulating organisms (PAOs) metabolism mainly dependent on the glycolysis pathway. The results of microbial ecology analysis revealed that the optimized SRTSS would give a competitive advantage to PAOs in the S2EBPR process. By obtaining statistically reliable results, this study would provide guidance for wastewater treatment plants to achieve optimal P removal performance in S2EBPR configuration.


Assuntos
Fósforo , Esgotos , Reatores Biológicos , Águas Residuárias , Carbono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA