Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Med Rep ; 24(5)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34498705

RESUMO

Tubular atrophy/interstitial fibrosis (TA/IF) is a major cause of late allograft loss, and inflammation within areas of TA/IF is associated with adverse outcomes in kidney transplantation. However, there is currently no satisfactory method to suppress this inflammation to improve TA/IF. The present study aimed to determine the proinflammatory role of receptor­interacting protein 3 (RIP3) in TA/IF to discover a novel therapeutic target. Reverse transcription­quantitative PCR and western blotting were performed to detect the expression of RIP3 and inflammation­associated factors. Lactate dehydrogenase release assay was used to determine necroptosis. Fluorescent 2,7­dichlorodihydrofluorescein diacetate was used to detect the levels of reactive oxygen species (ROS). The results demonstrated that patients with chronic TA/IF exhibited upregulated receptor­interacting protein 3 (RIP3) expression compared with the patients who had a favorable recovery after renal transplant. Therefore, the current study used normal renal tubular epithelial cells HK­2 to establish a cellular model with a high expression level of RIP3 in order to investigate the effect of RIP3 on renal epithelial cells after transplantation. The western blotting results demonstrated that overexpression of RIP3 could significantly increase the phosphorylation level of the necroptosis executive molecule mixed lineage kinase domain­like protein. Lactate dehydrogenase release, a key feature of necroptosis, was also markedly improved by RIP3 overexpression. Moreover, a higher inflammatory response was detected in HK­2 cells with RIP3 overexpression, and this elevated inflammation could be restored by the necroptosis inhibitor necrosulfonamide. Of note, it was found that overexpression of RIP3 activated the NF­κB signaling pathway via the excessive accumulation of ROS to induce necroptosis, which ultimately led to inflammation. Collectively, these findings indicated that overexpression of RIP3 promoted necroptosis via a ROS­dependent NF­κB pathway to induce chronic inflammation, suggesting that RIP3 may have the potential to be a therapeutic target against inflammation in TA/IF.


Assuntos
Inflamação/metabolismo , Nefropatias/metabolismo , Túbulos Renais/patologia , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Adulto , Atrofia/etiologia , Atrofia/metabolismo , Atrofia/patologia , Estudos de Casos e Controles , Feminino , Fibrose/etiologia , Fibrose/metabolismo , Fibrose/patologia , Humanos , Inflamação/etiologia , Inflamação/patologia , Nefropatias/etiologia , Nefropatias/patologia , Túbulos Renais/metabolismo , Masculino , Pessoa de Meia-Idade , NF-kappa B/genética , Necroptose/fisiologia , Fosforilação , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais
2.
Chemosphere ; 268: 128839, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33228986

RESUMO

Abundant active oxygen free radicals could efficiently remove refractory organic pollutants. In previous research, the original carbon nitride can form more hydrogen peroxide, however, owing to the limitation of its band structure, the original carbon nitride cannot decompose the hydrogen peroxide to generate more active oxygen free radicals. Herein, this work reports a simple bottom-up synthesis method, which synthesize a broad-spectrum-response carbon nitride (CN-CA) with oxygen-linked band and porous defect structure, while adjusting the band structure, and the introduction of the oxygen-linked band structure can also decompose the hydrogen peroxide produced by the original carbon nitride to form more active oxygen free radicals. Instrumental characterization and analysis of experimental results revealed the important role of oxygen-linked band and porous defects in adjusting the CN-CA energy band structure and improving its visible light absorption. The optimal CN-CA displays an outstanding photocatalytic degradation ability, that degradation rate of bisphenol A (BPA) reaches 99.8% within 150 min, the reaction rate constant of which is 6.77 times higher than that of pure g-C3N4, as also demonstrated with 2-mercaptophenthiazole (MBT) and ciprofloxacin (CIP). Meanwhile, the excellent degradation performance under blue LED (450-462 nm) and green LED (510-520 nm) exhibits the broad-spectrum characteristics of CN-CA. The degradation pathways of BPA and MBT were analyzed via HPLC-MS. Moreover, the primary active species were detected as O2-, OH and h+ based on the trapping experiments and ESR. This research provides a new strategy for g-C3N4 modified by porous defects and oxygen-linked band structure for environmental remediation.


Assuntos
Ciprofloxacina , Oxigênio , Compostos Benzidrílicos , Catálise , Fenóis , Fotólise , Porosidade
3.
J Hazard Mater ; 401: 123309, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-32652416

RESUMO

In this study, a new type of carbon and oxygen co-doped g-C3N4 (PACN) was successfully synthesized by a one-step thermal polymerization method for the photodegradation of Bisphenol A (BPA) and selective oxidation of toluene to benzaldehyde. The degradation rate of BPA was 23.58 times higher than that of pristine g-C3N4 and the efficiency benzaldehyde formation rate without the need of any solvent increased to 5.43 times that of g-C3N4. At the same time, the band structure calculation of its simulated structure is performed by DFT, which shows that the introduction of oxygen linking band can adjust its band structure and obtain a smaller band gap. In addition, the PACN displays an enhanced photocatalytic degradation of BPA under the long wavelength (λ ≥ 550 nm) and NIR light irradiation (λ ≥ 760 nm), which indicates that the synthesized materials have a broad spectrum of photocatalytic activity. According to the results of secondary ion mass spectrometry (SIMS) and nuclear magnetic resonance spectroscopy (NMR), C atoms and O atoms were introduced into the original g-C3N4 skeleton. In addition, the intermediate products were detected by mass spectrometry (HPLC-MS), and the BPA degradation pathway was proposed. A feasible photocatalytic reaction mechanism was also proposed.

4.
J Colloid Interface Sci ; 566: 171-182, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32004957

RESUMO

For the first time, herein this work, we have developed an effective and adaptable method to introduce defects onto the polymeric carbon nitride by simply grinding urea with urea nitrate which resulting new carbon nitride composite (UNU-C3N4) and melamine with urea nitrate which resulting new carbon nitride composite (UNM-C3N4). The UNU-C3N4 reveals high performance towards photocatalytic hydrogen production and as well as photocatalytic removal of contaminants. The results confirm that the defects enhanced the specific surface area, and improved performance of adsorbed oxygen which beneficial to generate more active radicals and more conducive sties to improve d the overall photocatalytic performance. The high N, H, and O content-enhanced electron polarization effects, by introducing the additional N, H, and O atoms into the g-C3N4 matrix, which will increase the charge transfer rate and charge separation efficiency. At the same time, the results of ESR also expression that the new type of as-prepared carbon nitride samples exhibit abundant of hydrogen radical (H) formation, which is also assist to improve the photocatalytic hydrogen production performance. As expected, the H2 evolution rate of UNU-C3N4(or UNM-C3N4) underneath simulated solar light irradiation is 9.93 times (13.76 times) than that of U-C3N4 (urea as raw material) (or M-C3N4 (melamine as raw material)). The high hydrogen evolution rates of UNU-C3N4 and UNM-C3N4 are 830.94 and 556.79 µmol g-1  h-1 under the visible-light irradiation, respectively. Meanwhile, the synthesized UNU-C3N4 and UNM-C3N4 material are demonstrated an efficient ability to degrade pollutants. In general, this work provides a viable way to introduce defects and hydrogen bands into the structure of carbon nitride.

5.
J Hazard Mater ; 384: 121480, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31704118

RESUMO

Photoreduction of highly toxic Cr(VI) has been regarded as an efficient and green method to achieve water purification. In this process, better charge carrier separation is vital to achieving excellent performance. Besides, it is vital to systematically explore the influencing factors and reaction mechanism. Herein, a novel 3D PPy/Zn3In2S6 nanoflower composite was successfully fabricated via in-situ polymerization. The remarkable conductivity of PPy provides a good electron transport path to facilitate the separation and migration of charge carriers, which benefits to the activity improvement. The results show that 5% PPy/Zn3In2S6 exhibits superior photocatalytic activity with almost 100% Cr(VI) reduction just within 24 min and 99.4% of Methyl orange (MO) is degraded in 25 min. On this basis, factors of different catalyst dosage, concentration, ions and pH under the reduction system were systematically investigated. Especially, different organic acids were in-depth analyzed and the activity could be significantly enhanced just adding 0.1 mmol organic acids. 5% 3D PPy/Zn3In2S6 nanoflower composites (with tartaric acid) exhibits superior photocatalytic activity, which can achieve 100% photoreduction of Cr(VI) just within 6 min. Finally, a possible reaction mechanism was proposed. Moreover, 3D PPy/Zn3In2S6 nanoflower also presented an efficient photodegradation activity for organic pollution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA