Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Lasers Med Sci ; 38(1): 157, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407742

RESUMO

This study aimed to explore the safety and clinical efficacy of light emitting diode (LED) golden light combined with acyclovir in treating herpes zoster (HZ). According to the random number table, 54 inpatients with HZ were divided into control group, golden-light group, and red-light group, with 18 cases in each group. The control group received acyclovir intravenous drip, while the patients in the red-light group received acyclovir intravenous drip and red-light LED phototherapy, and the golden-light group received acyclovir intravenous drip and golden-light LED phototherapy. Primary assessments included herpes stopping time, incrustation time, decrustation time, pain visual analog scale scores (VAS), and incidence of postherpetic neuralgia (PHN) on the 30th and 90th days. Golden-light group and red-light group showed a shorter herpes stopping time, incrustation time, and decrustation time (P < 0.05) compared to the control group (P < 0.05), while the golden-light group showed a shorter incrustation time and decrustation time than the red light group (all P < 0.05). After treatment VAS scores, the golden-light group showed a significant improvement compared to the control group. The golden-light group showed a better PHN incidence than the control group at 30 days follow-up. Compared with the comprehensive curative effect, the total effective rates of the golden-light group, red-light group, and control group were 88.89%, 77.78%, and 72.22%, respectively, and the efficacy of the golden-light group was better than that of the control group and red-light group. Golden light combined with acyclovir can shorten the course of HZ, relieve pain, and reduce the occurrence of PHN, and the effect is better than that of the red-light group and the control group.


Assuntos
Herpes Zoster , Neuralgia Pós-Herpética , Humanos , Aciclovir/uso terapêutico , Estudos Prospectivos , Herpes Zoster/tratamento farmacológico , Herpes Zoster/epidemiologia , Neuralgia Pós-Herpética/tratamento farmacológico , Resultado do Tratamento
2.
ACS Omega ; 6(3): 1971-1984, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33521437

RESUMO

In order to reveal the dissolution process, the adsorption kinetics and diffusion theory are combined and used to describe the adsorption-diffusion mechanism. This can not only predict the solubility of supercritical CO2 in polymer melts but also describe two important parameters of supercritical CO2 in the dissolution process: dissolution amount and dissolution rate, which can provide a good theoretical basis for microcellular foaming. To verify the feasibility and accuracy of the theoretical calculation method, an experimental device for the volume-changing method under static condition was established. The results showed that the theoretical calculation value was in good agreement with the experimental value. In addition, the dissolution amount and dissolution rate of supercritical CO2 in three polystyrene melts with different molecular weights under different temperature and pressure conditions were measured. The results showed that the difference of polystyrene molecular weight can cause the change of dissolution rate during the dissolution process, that is, the larger the molecular weight, the slower the dissolution rate.

3.
Polymers (Basel) ; 12(2)2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041271

RESUMO

The diameter of a micro-tube is very small and its wall thickness is very thin. Thus, when applying double-layer gas-assisted extrusion technology to process a micro-tube, it is necessary to find the suitable inlet gas pressure and a method for forming a stable double gas layer. In this study, a double-layer gas-assisted extrusion experiment is conducted and combined with a numerical simulation made by POLYFLOW to analyze the effect of inlet gas pressure on micro-tube extrusion molding and the rheological properties of the melt under different inlet gas pressures. A method of forming a stable double gas layer is proposed, and its formation mechanism is analyzed. The research shows that when the inlet gas pressure is large, the viscosity on the inner and outer wall surfaces of the melt is very low due to the effects of shear thinning, viscous dissipation, and the compression effect of the melt, so the melt does not easily adhere to the wall surface of the die, and a double gas layer can be formed. When the inlet gas pressure slowly decreases, the effects of shear thinning and viscous dissipation are weakened, but the gas and the melt were constantly displacing each other and reaching a new balanced state and the gas and melt changed rapidly and steadily in the process without sudden changes, so the melt still does not easily adhere to the wall of the die. Thus, in this experiment, we adjusted the inlet gas pressure to 5000 Pa first to ensure that the melt do not adhere to the wall surface and then slowly increased the inlet gas pressure to 10,000 Pa to reduce the viscosity of the melt. Lastly, we slowly decreased the inlet gas pressure to 1000 Pa to form a stable double gas layer. Using this method will not only facilitate the formation of a stable double gas layer, but can also accurately control the diameter of the micro-tube.

4.
ACS Omega ; 4(27): 22464-22474, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31909329

RESUMO

The amount of supercritical CO2 dissolved in polystyrene (PS), dissolution rate, and solubility under static conditions at 170-190 °C and 7.5-9.5 MPa were calculated by utilizing volume-changing-method experiments and numerical simulations. By comparison, the instantaneous error can be guaranteed to be less than 15%. The two results are in good agreement, and the reliability of the simulation method is verified. Based on the obtained results, another parameter was added to the tested model, and the dissolution rate of supercritical CO2 in PS under different shear conditions was numerically simulated. The effects of temperature, pressure, and shear rate on dissolution were analyzed. The results show that when the temperature and pressure are constant, the dissolution rate of supercritical CO2 in PS with shear increases significantly compared with that without shear. The conditions that enable the maximum dissolution rate are 190 °C, 9.5 MPa, and a shear rate of 240/π. With the abovementioned pressure and shear rate conditions, the maximum solubility can be obtained under the temperature of 170 °C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA