Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Am J Transl Res ; 16(4): 1322-1336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715831

RESUMO

OBJECTIVES: Triple-negative breast cancer (TNBC) is characterized by significant heterogeneity, presenting a formidable challenge with a poor prognosis and a deficiency of efficacious treatment options. METHODS: In this comprehensive study, we investigated the multifaceted role of Microfibril-associated glycoprotein 2 (MFAP2) in TNBC using a combination of bioinformatics analysis involving Gene Expression Omnibus (GEO), OncoDB, UALCAN, Human Protein Atlas (HPA), TIMER, STRING, DAVID, and GSCA databases and in vitro experiments, such as cell culture, MFAP2 gene knockdown, RT-qPCR, western Blot, colony formation, Cell counting kit-8, and wound healing assays. RESULTS: Our findings demonstrated a significant up-regulation of MFAP2 mRNA in TNBC cell lines, emphasizing its potential as a diagnostic biomarker. Validation across multiple datasets further affirmed the elevated expression of MFAP2 in TNBC tissues, underscoring its prognostic relevance. Notably, our study revealed a correlation between MFAP2 expression and immune cell infiltration, suggesting its role in shaping the tumor microenvironment. STRING analysis unveiled interactions with proteins involved in elastic fibers and extracellular matrix constituents. Furthermore, KEGG pathway analysis highlighted enrichment in the TGF-beta signaling pathway, implicating MFAP2 in key cancer-related processes. Drug sensitivity analysis identified potential therapeutic targets, supporting MFAP2's utility in personalized treatment strategies. In vitro experiments corroborated the oncogenic impact of MFAP2, demonstrating its influence on TNBC cell proliferation and migration. CONCLUSION: These comprehensive findings position MFAP2 as a promising biomarker and therapeutic target in TNBC, offering valuable insight for future research and clinical application.

2.
Transl Oncol ; 39: 101806, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38235619

RESUMO

BACKGROUND: This study aimed to investigate the specific roles of the long non-coding RNA (lncRNA) proteasome 20S subunit beta 8 (PSMB8)-antisense RNA 1 (AS1)/microRNA (miR)-382-3p/branched-chain amino acid transaminase 1 (BCAT1) interaction network in gliomas. METHODS: Western blotting and quantitative reverse transcription-polymerase chain reaction were performed to assess the expression levels of lncRNA PSMB8-AS1, BCAT1, and miR-382-3p. Moreover, the cell proliferation, migration, and apoptosis were assessed using the cell counting kit-8, Transwell, and caspase-3 activity assays, respectively. The biological role of lncRNA PSMB8-AS1 in glioma was investigated in vivo using a xenograft mouse model. Additionally, the associations among lncRNA PSMB8-AS1, miR-382-3p, and BCAT1 were analyzed using dual-luciferase and RNA immunoprecipitation assays and bioinformatics analyses. RESULTS: Glioma cell lines and tissues exhibited overexpression of lncRNA PSMB8-AS1 and BCAT1 and low expression of miR-382-3p. Knockdown of PSMB8-AS1 remarkably repressed the tumor growth in vivo and the migration and proliferation of glioma cells in vitro. In contrast, knockdown of lncRNA PSMB8-AS1 increased the cell apoptosis. Mechanistically, PSMB8-AS1 directly targeted miR-382-3p. By sponging miR-382-3p, lncRNA PSMB8-AS1 stimulated the migration and proliferation of glioma cells and suppressed their apoptosis. Additionally, miR-382-3p directly targeted BCAT1. Inhibition of miR-382-3p reversed the antitumor effects of BCAT1 silencing on glioma progression. CONCLUSION: Our study revealed that lncRNA PSMB8-AS1 aggravated glioma malignancy by enhancing BCAT1 expression after competitively binding to miR-382-3p. Therefore, lncRNA PSMB8-AS1 may be a potential biomarker and therapeutic target for glioma treatment.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38290440

RESUMO

Objective: The primary aim of this research is to investigate the predictive value of subdural effusion thickness in determining the progression of post-traumatic subdural effusion to chronic subdural hematoma. Studying this progression is crucial as it helps in early diagnosis and effective management of chronic subdural hematoma, which is a serious and life-threatening condition. This research is valuable and relevant for improving patient outcomes and reducing the associated risks and complications. Methods: We conducted a retrospective examination of the clinical data obtained from 124 patients who were treated for post-traumatic subdural effusion at our neurosurgery department between March 2017 and March 2021. The data collection process involved reviewing the patients' medical records, radiographic images, and follow-up visits. We used strict criteria for patient selection, including a confirmed diagnosis of post-traumatic subdural effusion, availability of follow-up data, and no prior history of chronic subdural hematoma. Patients who experienced a progression of subdural effusion to chronic subdural hematoma were assigned to the hematoma group (26 cases). In comparison, those who did not show such progression were categorized into the effusion group (98 cases). We endeavored to identify potential risk factors contributing to the progression from subdural effusion to chronic subdural hematoma. The predictive strengths of these risk factors were evaluated using receiver operating characteristic (ROC) curves. Results: There were no statistically significant disparities between the two groups in terms of gender, hypertension, COPD, and GCS scores (P > .05). However, significant differences were noted in the variables of age, tSAH, the location of subdural effusion, and subdural effusion thickness (P < .05). Multivariate logistic regression analysis disclosed age (1.213), tSAH (12.542), and subdural effusion thickness (1.786) as independent risk factors for the conversion of TSE to CSDH (P < .05). The ROC curve showed the AUC values of age, tSAH, and subdural effusion thickness for predicting CSDH to be 0.739, 0.670, and 0.820, respectively, with a combined AUC value of 0.942, thereby outperforming the individual tests. Conclusion: In patients suffering from post-traumatic subdural effusion, the thickness of the subdural effusion emerges as a strong predictor for its progression into a chronic subdural hematoma. Clinicians should be particularly cautious when the effusion thickness exceeds 10.7 mm, as the likelihood of transformation increases significantly. These findings have important implications for clinical practice and patient management, highlighting the need for prompt and effective treatment to prevent chronic complications.

4.
Adv Mater ; 36(13): e2310143, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38134811

RESUMO

Sluggish sulfur redox kinetics and Li-dendrite growth are the main bottlenecks for lithium-sulfur (Li-S) batteries. Separator modification serves as a dual-purpose approach to address both of these challenges. In this study, the Co/MoN composite is rationally designed and applied as the modifier to modulate the electrochemical kinetics on both sides of the sulfur cathode and lithium anode. Benefiting from its adsorption-catalysis function, the decorated separators (Co/MoN@PP) not only effectively inhibit polysulfides (LiPSs) shuttle and accelerate their electrochemical conversion but also boost Li+ flux, realizing uniform Li plating/stripping. The accelerated LiPSs conversion kinetics and excellent sulfur redox reversibility triggered by Co/MoN modified separators are evidenced by performance, in-situ Raman detection and theoretical calculations. The batteries with Co/MoN@PP achieve a high initial discharge capacity of 1570 mAh g-1 at 0.2 C with a low decay rate of 0.39%, uniform Li+ transportation at 1 mA cm-2 over 800 h. Moreover, the areal capacity of 4.62 mAh cm-2 is achieved under high mass loadings of 4.92 mg cm-2. This study provides a feasible strategy for the rational utilization of the synergistic effect of composite with multifunctional microdomains to solve the problems of Li anode and S cathode toward long-cycling Li-S batteries.

5.
Chempluschem ; 88(8): e202300341, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37587086

RESUMO

MnO2 has the advantages of low cost and abundant resources, so it is considered to be an important electrode material in zinc ion batteries. However, its practical application is still challenged by easy collapse and capacity loss. In this paper, a stable single crystal ß-MnO2 nanorod cathode material was prepared. When used as ZIBs cathode material, single crystal ß-MnO2 has high ionic diffusion kinetics and calculability. In this paper, we prepared single-crystal MnO2 through hydrothermal nanotechnology. By leveraging the benefits of the single-crystal structure, we optimized the structural stability, ion conductivity, surface reactions, and phase control of the cathode material, resulting in improved battery performance and cycle life. In the fabricated single-crystal MnO2 aqueous zinc-ion battery, the elimination of internal crystal faces in MnO2 leads to ordered lattice arrangement, enabling a more direct and unobstructed diffusion path for H+ ions within the lattice. This significantly enhances the ion conductivity of the cathode material, promoting the rate and efficiency of the battery's charge and discharge processes. Therefore, single-crystal MnO2 exhibits excellent cycling performance for zinc-ion storage in ZIBs, achieving a high specific capacity of 224.7 mA h g-1 after 250 cycles under a current density of 0.3 A g-1 , while maintaining a Coulombic efficiency of 99.58 %.

6.
Small ; 19(38): e2301985, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37226367

RESUMO

Benefiting from the admirable energy density (1086 Wh kg-1 ), overwhelming security, and low environmental impact, rechargeable zinc-air batteries (ZABs) are deemed to be attractive candidates for lithium-ion batteries. The exploration of novel oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) bifunctional catalysts is the key to promoting the development of zinc-air batteries. Transitional metal phosphides (TMPs) especially Fe-based TMPs are deemed to be a rational type of catalyst, however, their catalytic performance still needs to be further improved. Considering Fe (heme) and Cu (copper terminal oxidases) are nature's options for ORR catalysis in many forms of life from bacteria to humans. Herein, a general "in situ etch-adsorption-phosphatization" strategy is designed for the fabrication of hollow FeP/Fe2 P/Cu3 P-N, P codoped carbon (FeP/Cu3 P-NPC) catalyst as the cathode of liquid and flexible ZABs. The liquid ZABs manifest a high peak power density of 158.5 mW cm-2 and outstanding long-term cycling performance (≈1100 cycles at 2 mA cm-2 ). Similarly, the flexible ZABs deliver superior cycling stability of 81 h at 2 mA cm-2 without bending and 26 h with different bending angles.

7.
Adv Mater ; 34(50): e2204403, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36208086

RESUMO

Developing a conductive catalyst with high catalytic activity is considered to be an effective strategy for improving cathode kinetics of lithium-sulfur batteries, especially at large current density and with lean electrolytes. Lattice-strain engineering has been a strategy to tune the local structure of catalysts and to help understand the structure-activity relationship between strain and catalyst performance. Here, Co0.9 Zn0.1 Te2 @NC is constructed after zinc atoms are uniformly doped into the CoTe2 lattice. The experimental/theoretical results indicate that a change of the coordination environment for the cobalt atom by the lattice strain modulates the d-band center with more electrons occupied in antibonding orbitals, thus balancing the adsorption of polysulfides and the intrinsic catalytic effect, thereby activating the intrinsic activity of the catalyst. Benefiting from the merits, with only 4 wt% dosages of catalyst in the cathode, an initial discharge capacity of 1030 mAh g-1 can be achieved at 1 C and stable cycling performances are achieved for 1500/2500 cycles at 1 C/2 C. Upon sulfur loading of 7.7 mg cm-2 , the areal capacity can reach 12.8 mAh cm-2 . This work provides a guiding methodology for the design of catalytic materials and refinement of adsorption-catalysis strategies for the rational design of cathode in lithium-sulfur batteries.

8.
World J Clin Cases ; 10(16): 5208-5216, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35812683

RESUMO

BACKGROUND: Intraventricular hemorrhage is a neurosurgical emergency, and a dangerous condition associated with high morbidity and mortality. Previously, hematoma evacuation is generally executed by external intracranial drainage (EVD) or surgical evacuation. Nowadays, endoscopic evacuation is emerging as a good alternative because it brings relatively less invasion and injury. However, successful endoscopic evacuation requires skilled manipulation of endoscopic devices and the evidence supporting its efficacy differs in different reports. AIM: To improve the technique usage and provide more evidence of endoscopic evacuation efficacy, we summarize our surgical experience and compared the outcomes of the endoscopic evacuation with EVD using real-world data. METHODS: We retrospectively studied 96 consecutive patients with intraventricular hemorrhage who underwent either endoscopic surgery (n = 43) or non-endoscopic surgery (n = 53) for hemorrhage evacuation between November 2013 and September 2019 in our center. Patients' conditions prior to and after the operation were evaluated and analyzed to assess the efficacy of the operation. The consciousness status improvement and perioperative in-hospital parameters in the two types of operation groups were assessed and compared. RESULTS: Patients in the endoscopic and non-endoscopic groups presented with a similar state of consciousness, with a comparable Glasgow Coma Scale (GCS) index. The average operation time of the endoscopic group was longer than that of the non-endoscopic group (median 2.42 h vs 1.08 h, P < 0.001). Although the endoscopic group was older and had a baseline Graeb score that indicated more severe hemorrhage than the non-endoscopic group (Graeb median: Endoscopic group = 9 vs non-endoscopic group = 8, P = 0.023), the clearance rate of hematoma was as high as 60.5%. Both the endoscopic and non-endoscopic groups showed an improved GCS index after surgery. However, this improvement was more marked in patients in the endoscopic group (median improvement of GCS index: Endoscope group = 4 vs non-endoscopic group = 1, P < 0.001). Additionally, the endoscopic group had a lower Graeb score than the non-endoscopic group after the operation. The intensive care unit stay of the endoscopic group was significantly shorter than that of the non-endoscopic group (median: endoscopic group = 6 d vs non-endoscope group = 7 d, P = 0.017). CONCLUSION: Endoscopic evacuation of intraventricular hemorrhage was generally an effective and efficient way for hemorrhage evacuation, and contributed remarkably to the improvement of consciousness in patients with intraventricular hemorrhage.

9.
Anticancer Drugs ; 33(7): 642-651, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35324533

RESUMO

Circular RNA takes a crucial part in carcinogenesis. Circ_0058063 has been found to act as an oncogene in esophageal cancer and bladder cancer, but its role in thyroid cancer (TC) is still under investigation. Therefore, we carried out a study to understand its role in TC and its association with miR-330-3p. The circ_0058063 and miR-330-3p in TC tissues and cells were quantified by quantitative reverse transcription PCR, and cell counting kit-8 and scratch adhesion test were conducted for evaluation of cell proliferation and migration. In addition, a dual luciferase reporter assay and RNA immunoprecipitation assay were conducted for interaction analysis between circ_0058063 and miR-330-3p. Circ_0058063 was upregulated in TC tissues and cells, but miR-330-3p expression showed an opposite trend. Both silencing circ_0058063 and upregulating miR-330-3p can suppress the proliferation and migration of TC cells, upregulate Bax, and downregulate Bcl-2. In addition, circ_0058063 is able to target miR-330-3p that is also able to target syndecan 4 (SDC4). circ_0058063 can act as a carcinogen in cases with TC via the miR-330-3p/SDC4 axis.


Assuntos
MicroRNAs , Neoplasias da Glândula Tireoide , Movimento Celular , Proliferação de Células , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , Sindecana-4 , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo
10.
ACS Appl Mater Interfaces ; 14(13): 15324-15336, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35315652

RESUMO

Metal sulfides are promising anodes for potassium-ion batteries (PIBs) due to their high theoretical capacity and abundant active sites; however, their intrinsic low conductivity and poor cycling stability hampered their practical applications. Given this, the rational design of hybrid structures with high stability and fast charge transfer is a critical approach. Herein, CoS2/ZnS@rGO hybrid nanocomposites were demonstrated with stable cubic phases. The synergistic effect of the obtained bimetallic sulfide nanoparticles and highly conductive 2D rGO nanosheets facilitated excellent long-term cyclability for potassium ion storage. Such hybrid nanocomposites delivered remarkable ultrastable cycling performances in PIBs of 159, 106, and 80 mA h g-1 at 1, 1.5, and 2 A g-1 after 1800, 2100, and 3000 cycles, respectively. Moreover, the full-cell configuration with a perylene tetracarboxylic dianhydride organic cathode (CoS2/ZnS@rGO∥PTCDA) exhibited a better electrochemical performance. Besides, when the CoS2/ZnS@rGO nanocomposites were applied as an anode for sodium-ion batteries, the electrode demonstrated a reversible charge capacity of 259 mA h g-1 after 600 cycles at 2 A g-1. In situ X-ray diffraction and ex situ high-resolution transmission electron microscopy characterizations further confirmed the conversion reactions of CoS2/ZnS during insertion/desertion processes. Our synthesis strategy is also a general route to other bimetallic sulfide hybrid nanocomposites. This strategy opens up a new roadmap for exploring hybrid nanocomposites with feasible phase engineering for achieving excellent electrochemical performances in energy storage applications.

11.
Small ; 18(15): e2107252, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35224841

RESUMO

Suitable anode materials with high capacity and long cycling stability, especially capability at high current densities, are urgently needed to advance the development of potassium ion batteries (PIBs) and sodium ion batteries (SIBs). Herein, a porous Ni-doped FeSe2 /Fe3 Se4 heterojunction encapsulated in Se-doped carbon (NF11 S/C) is designed through selenization of MOFs precursor. The porous composite possesses enriched active sites and facilitates transport for both ion and electron. Ni-doping is adopted to enrich the lattice defects and active sites. The Se-C bond and carbon framework endow integrity of the composite and hamper aggregation of selenide nano-particles during potassiation/de-potassiation. The NF11 S/C exhibits exceptional rate performance and ultra-long cycling stability (177.3 mA h g-1 after 3050 cycles at 2 A g-1 for PIBs and 208.8 mA h g-1 after 2000 cycles at 8 A g-1 for SIBs). The potassiation/de-potassiation mechanism is investigated via ex-situ X-ray powder diffraction, high-resolution transmission electron microscopy, X-ray photoelectron spectrocopy and Raman analysis. PTCDA//NF11 S/C full cell stably cycles for 1200 cycles at 200 mA g-1 with a capacity of 103.7 mA h g-1 , indicating the high application potential of the electrode for highly stable rechargeable batteries.

12.
Curr Med Chem ; 29(17): 3111-3124, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34477508

RESUMO

Exosomes are a heterogeneous group of nano-sized natural membrane vesicles released from various cells and exist in body fluids. Different from the previous understanding of the function of exosomes as "garbage bins", exosomes act as carriers with many kinds of bioactive molecules (e.g., proteins, lipids, and nucleic acids) to play an important role in cell-cell communication. Growing evidence in recent years has suggested that exosomes also play some roles in the pathogenesis, diagnosis, and treatment modalities of some brain diseases, including ischemic stroke, Alzheimer's disease, Parkinson's disease, multiple sclerosis, and brain cancers. Exosomes as therapeutic drug carriers for brain drug delivery have received extensive attention as well as exosomes can overcome the blood-brain barrier (BBB). However, the low targeting ability and size-dependent cellular uptake of native exosomes could profoundly affect the delivery performance of exosomes. Recent studies have indicated that engineered exosomes can increase the drug uptake efficiency and the subsequent drug efficacy. In the present paper, we will briefly introduce the engineering methods and applications of engineered exosomes in the treatment of brain diseases, and then focus on discussing the advantages and challenges of exosome- based drug delivery platforms to further enrich and boost the development of exosomes as a promising drug delivery strategy for brain diseases.


Assuntos
Exossomos , Doença de Parkinson , Comunicação Celular , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos , Exossomos/metabolismo , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo
13.
J Hazard Mater ; 421: 126798, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34388926

RESUMO

Domoic acid (DA) is a major marine neurotoxin, occurs frequently in most of the world's coastlines and seriously threatens ecosystem and public health. However, information on its biotransformation process in coastal anaerobic environments remains unclear. In this study, the underlying mechanism of anaerobic biotransformation of DA by marine consortium GLY was investigated using the combination of liquid chromatography-high-resolution Orbitrap mass spectrometry and comparative metatranscriptomics analysis. The results demonstrated that DA could be cometabolically biotransformed under anaerobic conditions with pseudo-first-order reaction. Anaerobic biotransformation pathway of DA was clarified, including decarboxylation, dehydrogenation, carboxylation activation with CoA and multiple ß-oxidation steps occurring at aliphatic side chain, which facilitated DA detoxification. Furthermore, anaerobic cometabolic biotransformation mechanism of glycine-DA by consortium GLY was established for the first time, a number of genes related to the metabolic pathways of glycine fermentation, fatty acid synthesis and ß-oxidation were responded in the consortium GLY transcriptome and involved in the anaerobic biotransformation of DA. This study could deepen understanding of interaction mechanism between toxin DA and marine microorganisms, which provides a new insight into the DA fate and its effects on benthic microbial community in marine environments.


Assuntos
Ecossistema , Toxinas Marinhas , Anaerobiose , Biotransformação , Ácido Caínico/análogos & derivados
14.
J Hazard Mater ; 424(Pt B): 127534, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34879524

RESUMO

Naphthenic acids (NAs) are a persistent toxic organic pollutant that occur in different environment worldwide and cause serious threat to the ecosystem and public health. However, knowledge on the behavior and fate of NAs in marine environments still remains unknown. In this study, the degradation mechanism of NAs (cyclohexylacetic acid, CHAA) was investigated using an common indigenous marine Pseudoalteromonas sp. The results showed that CHAA could be degraded completely under aerobic condition, but could not be utilized directly under anaerobic condition. Interestingly, transcriptome and key enzyme activity results showed the CHAA degradation pathway induced under aerobic condition could still work in anaerobic condition. The degradation was activated by acetyl-CoA transferase and sequentially formed the corresponding cyclohexene, alcohol, and ketone with the assistance of related enzymes, and finally cleaved by hydroxymethylglutarate-CoA lyase. Besides, there was a positive correlation between chemotaxis and aerobic degradation genes (r = 0.976, P < 0.05), the chemotaxis would enhance bacterium movement and NAs biodegradation. It is proposed that bacterium could translocate to NAs and accomplish biodegradation from aerobic to anaerobic environments, which was a new anaerobic degradation pathway of NAs. This study provides new insights into the fate of NAs and other organic contaminants in marine environment.


Assuntos
Pseudoalteromonas , Biodegradação Ambiental , Ácidos Carboxílicos , Ecossistema , Pseudoalteromonas/genética
15.
Bioresour Technol ; 332: 125108, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33845320

RESUMO

Polyacrylate containing wastewater (PCW) is the typical sewage discharged by the textile industry. It has extremely poor biodegradability, and chemical methods were used conventionally as the only way for treating PCW. This study is demonstrating a novel biological method. In batch experiment monod kinetics was applied to the experimental data, which indicated that anaerobic treatment used for PCW is feasible. The pilot-scale experiment combined a Spiral Symmetry Stream Anaerobic Bioreactor (SSSAB) and an air-lift external circulation vortex enhancement nitrogen removal fluidized bed bioreactor (AFB). The COD and NH4+-N removal reached up to 95.2% and 96.6%, respectively, which were higher than the value obtained by other chemical methods. High-throughput sequencing analysis indicated that the relative abundance of Proteobacteria, Firmicutes and Bacteroidetes increased, which contribute to the degradation of PCW. Therefore, PCW can be degraded efficiently by using a SSSAB-AFB technique and thus provides an alternative to the chemical methods.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Anaerobiose , Reatores Biológicos , Esgotos
16.
Comput Math Methods Med ; 2021: 4439505, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34992672

RESUMO

BACKGROUND: Hepatoma is a leading cause of death worldwide, with high metastasis and recurrence rates. The aberrant expression of miRNA-130a-5p is involved in the development and progression of various cancers. However, there are no studies investigating the role of miRNA-130a-5p in hepatoma. The present study is aimed at clarifying the functional role of miRNA-130a-5p in hepatoma progression. METHODS: The expression levels of miRNA-130a-5p in hepatoma tissues and cell lines were detected by qRT-PCR assays. Bioinformatic analysis, gain-/loss-of-function experiments, and luciferase activity assays were conducted to verify whether miRNA-130a-5p is targeted by protein tyrosine phosphatase 4A2 (PTP4A2). The functions of miRNA-130a-5p and PTP4A2 in hepatoma were determined by cell proliferation assays. RESULTS: The expression of miRNA-130a-5p was downregulated in hepatoma tissues and was related to poor prognosis. However, the expression level of PTP4A2 was contradictory to that of miRNA-130a-5p, and PTP4A2 upregulation could aggravate hepatoma progression. The ectopic overexpression of PTP4A2 promoted hepatoma cell proliferation in vitro, which could be reversed by miRNA-130a-5p. CONCLUSIONS: Our study implies that miRNA-130a-5p, which is downregulated in hepatoma tissues, can suppress hepatoma cell proliferation via targeting PTP4A2.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , MicroRNAs/genética , Proteínas Tirosina Fosfatases/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Biologia Computacional , Progressão da Doença , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Prognóstico , Proteínas Tirosina Fosfatases/metabolismo , Regulação para Cima
17.
Bioresour Technol ; 318: 124201, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33031976

RESUMO

The microalgae and macroalgae-based hydrochars produced by hydrothermal carbonization were mainly used as biofuels, however, their application in anaerobic digestion (AD) was little known. This study investigated the effects of microalgae Chlorella-based hydrochar (HC-C) and macroalgae Laminaria-based hydrochar (HC-L) on a continuous AD reactor under different organic loading rates (OLR). The AD process stability of hydrochars supplemented reactors were performed well under the increase of OLR from 2.6 to 6.5 g COD/L/d, and HC-C and HC-L addition could significantly enhance the daily methane yield by 36.0% and 31.4%, respectively. Interestingly, the possible mechanisms of HC-C and HC-L on the enhanced AD were similar, namely increasing sludge granulation, promoting the Methanothrix relative abundance and key enzyme activities, and further facilitating potential direct interspecies electron transfer between methanogens and organic-degrading bacteria. This study provided an implication on the potential application of algae-based hydrochars in wastewater treatment and energy recovery.


Assuntos
Chlorella , Anaerobiose , Biocombustíveis , Reatores Biológicos , Metano , Esgotos
18.
Sci Rep ; 10(1): 11776, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678256

RESUMO

Dysarthria is universal in Parkinson's disease (PD) during disease progression; however, the quality of vocalization changes is often ignored. Furthermore, the role of changes in the acoustic parameters of phonation in PD patients remains unclear. We recruited 35 PD patients and 26 healthy controls to perform single, double, and multiple syllable tests. A logistic regression was performed to differentiate between protective and risk factors among the acoustic parameters. The results indicated that the mean f0, max f0, min f0, jitter, duration of speech and median intensity of speaking for the PD patients were significantly different from those of the healthy controls. These results reveal some promising indicators of dysarthric symptoms consisting of acoustic parameters, and they strengthen our understanding about the significance of changes in phonation by PD patients, which may accelerate the discovery of novel PD biomarkers.


Assuntos
Disartria/diagnóstico , Disartria/etiologia , Doença de Parkinson/complicações , Acústica da Fala , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Avaliação de Sintomas , Voz
19.
Bioprocess Biosyst Eng ; 43(5): 851-861, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31919604

RESUMO

Conductive magnetite (Fe3O4) has been applied into some anaerobic bioprocesses to accelerate direct interspecies electron transfer (DIET), however, Fe3O4 is usually dissolved by iron-reducing bacteria under anaerobic conditions, resulting in the loss of magnetite. Therefore, submicron magnetite particles were added to the sequencing batch reactor (SBR) to build a Fe3O4/SBR system, which could alleviate magnetite dissolution and simultaneously remove tribromophenol (TBP) effectively. The average removal efficiencies of chemical oxygen demand (COD) and TBP in Fe3O4/SBR system were 81% and 91%, respectively, which were 51% and 18% higher than those of the control group without Fe3O4 (SBR system). The enhanced TBP biodegradation was likely related to potential DIET, which was supported by the scanning electron microscopy (SEM) analysis, the increase of dehydrogenase and heme c (fivefold and 1.7-fold), and the enrichment of iron-redoxing bacteria (Geobacter and Thiobacillus). Furthermore, magnetite mainly remained intact in structure as indicated by X-ray diffraction (XRD), which might be ascribed to in situ iron redox cycle and magnetite biosynthesis via Magnetospirillum. Notably, the content of hydrogen peroxide (H2O2) and hydroxyl radical (⋅OH) in Fe3O4/SBR system was 4-5 times higher than that of SBR system. These findings could provide insights into the development of cost-effective strategy for the removal of refractory organic pollutants.


Assuntos
Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Óxido Ferroso-Férrico/química , Geobacter/crescimento & desenvolvimento , Hidrocarbonetos Bromados/metabolismo , Fenol/metabolismo , Thiobacillus/crescimento & desenvolvimento , Hidrocarbonetos Bromados/química , Fenol/química
20.
RSC Adv ; 10(40): 23510-23521, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35517367

RESUMO

Helicobacter pylori (H. pylori) is one of the main factors that cause gastric lesions. The lotus leaf is an edible plant used in traditional Eastern medicine. This study evaluates the intervention effects of lotus leaf flavonoids (LLF) on gastric mucosal lesions in mice infected with H. pylori and explores their mechanism of action. High-performance liquid chromatography analysis reveals that LLF contain kaempferitrin (kaempferol-3,7-dirhamnoside), hypericin, astragalin (kaempferol-3-glucoside), phlorizin, and quercetin. LLF can reduce the number of gastric mucosal lesions and tissue lesions in mice with H. pylori-induced gastric lesions. LLF can increase the levels of somatostatin and vasoactive intestinal peptide in the serum of mice with gastric lesions and decrease the levels of substance P and endothelin-1 to inhibit gastric lesions. LLF can also reduce the levels of interleukin (IL)-6, IL-12, tumor necrosis factor (TNF)-α, and interferon-gamma cytokines in the serum of mice with gastric lesions. Using a quantitative polymerase chain reaction assay it can be seen that LLF can downregulate mRNA expressions of TNF-α, IL-1ß, myeloperoxidase, keratin (KRT) 16, KRT6b, and transglutaminase 3 epidermal in the gastric tissues of mice with gastric lesions. Western blot analysis indicates that LLF can downregulate the protein expressions of caspase-1, Nod-like receptor protein 3, IL-1ß, TNF-α, and Toll-like receptor 4 in the gastric tissues of mice with gastric lesions. LLF have beneficial effects on gastric lesions induced by H. pylori. Meanwhile LLF is more active in competition with ranitidine. LLF represent an active substance that can inhibit H. pylori-induced gastric lesions. The flavones of LLF may enhance the inhibition of gastric mucosal lesions by promoting the interaction between the compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA