Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Sci Total Environ ; 947: 174605, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38997030

RESUMO

Sixty-nine total suspended particle (TSP) samples, paired with forty-eight surface soil samples, covering four seasons from January 2021 to November 2021, were collected from the Three Gorges Reservoir Region (TGRR). Twenty per- and poly-fluoroalkyl substances (PFASs) were analyzed to evaluate their contamination characteristics and understand the role of atmospheric deposition on the environmental loads in TGRR. The annual average concentrations of PFASs in TSP and soil were 37.2 ± 1.22 pg·m-3 and 0.798 ± 0.134 ng·g-1, respectively. For TSP, concentrations were highest in spring and lowest in summer. For soil, it was in autumn and winter, respectively. The seasonality was more influenced by anthropogenic activities than by meteorological conditions or physicochemical parameters of the soil. Positive matrix fractionation (PMF) indicated that, based on annual averages, PFOA-based products (40.2 %) were the major sources of PFASs in TSP, followed by PFOS-based products (25.2 %) and precursor degradation (34.6 %). The highest source contributor for PFASs in spring was precursor degradation (40.9 %), while in other three seasons, it was PFOA-based products (39.9 %, 40.9 % and 52.0 %, respectively). The mean atmospheric dry and wet deposition fluxes of PFASs were estimated at 4.38 ng·m-2·day-1 and 23.5 ng·m-2·day-1, respectively. The contribution of atmospheric deposition to the inventory mass of PFASs in the surface soil was 22.3 %. These findings fill a gap in knowledge regarding the processes and mechanisms of the occurrence, sources and atmospheric deposition of PFASs in the TGRR.

2.
Environ Pollut ; 355: 124216, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38797350

RESUMO

The Three Gorges Reservoir (TGR) is totally manmade, strongly influenced by anthropogenic activity, and lies on the upper reaches of Yangtze River. The periodic storage and discharge of water from the Three Gorges Dam could have altered the original air-plant/soil interactions of contaminants in TGR. Herein, paired atmospheric gas-particle, air-plant, and air-soil samples were collected to investigate the air-plant interaction and air-soil exchange of 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs). The air-plant interaction based on McLachlan's framework to our datasets suggests that PAHs were absorbed via gaseous deposition that was restricted by the plant-gas dynamic equilibrium. The equilibrium indicates a dynamic balance between the gaseous phase and plant surface in PAH absorption. The main limiting factor influencing the PAH uptake was the plant species rather than the atmospheric PAH concentration. The air-soil exchange of PAHs exhibited a net volatilization flux of 16.71 ng/m2/d from the soil to the air based on annual average. There was more volatilization and less deposition in summer and more deposition and less volatilization in autumn and winter. The soil serves as a secondary source of atmospheric PAHs. As the first attempt on probing the multi-interface geochemical process of PAHs, this study highlights the influence of manual water level manipulation from the TGD and environmental factors (such as temperature, humidity, and soil properties) on the regional fate of PAHs in the TGR.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Solo , Hidrocarbonetos Policíclicos Aromáticos/análise , China , Poluentes Atmosféricos/análise , Solo/química , Poluentes do Solo/análise , Plantas/metabolismo , Poluentes Químicos da Água/análise , Humanos
3.
Environ Sci Process Impacts ; 26(5): 902-914, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38592781

RESUMO

Fifty-two consecutive PM2.5 samples from December 2021 to February 2022 (the whole winter) were collected in the center of Chongqing, a humid metropolitan city in China. These samples were analysed for the 16 USEPA priority polycyclic aromatic hydrocarbons (16 PAHs) to explore their composition and sources, and to assess their cancer risks to humans. The total concentrations of the 16 PAHs (ng m-3) ranged from 16.45 to 174.15, with an average of 59.35 ± 21.45. Positive matrix factorization (PMF) indicated that traffic emissions were the major source (42.4%), followed by coal combustion/industrial emission (31.3%) and petroleum leakage/evaporation (26.3%). The contribution from traffic emission to the 16 PAHs increased from 40.0% in the non-episode days to as high as 46.2% in the air quality episode during the sampling period. The population attributable fraction (PAF) indicates that when the unit relative risk (URR) is 4.49, the number of lung cancer cases per million individuals under PAH exposure is 27 for adults and 38 for seniors, respectively. It was 5 for adults and 7 for seniors, when the URR is 1.3. The average incremental lifetime cancer risk (ILCR) for children, adolescents, adults and seniors was 0.25 × 10-6, 0.23 × 10-6, 0.71 × 10-6, and 1.26 × 10-6, respectively. The results of these two models complemented each other well, and both implied acceptable PAH exposure levels. Individual genetic susceptibility and exposure time were identified as the most sensitive parameters. The selection and use of parameters in risk assessment should be further deepened in subsequent studies to enhance the reliability of the assessment results.


Assuntos
Poluentes Atmosféricos , Cidades , Monitoramento Ambiental , Material Particulado , Hidrocarbonetos Policíclicos Aromáticos , China , Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco , Material Particulado/análise , Poluentes Atmosféricos/análise , Humanos , Neoplasias/epidemiologia , Neoplasias/induzido quimicamente , Poluição do Ar/estatística & dados numéricos , Exposição Ambiental/estatística & dados numéricos , Exposição Ambiental/análise
4.
Environ Pollut ; 343: 123239, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38154782

RESUMO

A total of 84 PM2.5 (fine particulate matter) aerosol samples were collected between October 2020 and August 2021 within an urban site in Hangzhou, an East China megacity. Chemical species, such as organic carbon (OC), elemental carbon (EC), as well as char, soot, and n-alkanes, were analyzed to determine their pollution characteristics and source contributions. The mean yearly concentrations of OC, EC, char, soot, and total n-alkanes (∑n-alkane) were 8.76 ± 3.61 µg/m3, 1.44 ± 0.76 µg/m3, 1.21 ± 0.69 µg/m3, 0.3 ± 0.1 µg/m3, and 24.2 ± 10.6 ng/m3. The OC, EC, and ∑n-alkanes were found in the highest levels during winter and lowest during summer. There were strong correlations between OC and EC in both winter and spring, suggesting similar potential sources for these carbonaceous components in both seasons. There were poor correlations among the target pollutants due to summertime secondary organic carbon formation. Potential source contribution functions analysis showed that local pollution levels in winter and autumn were likely influenced by long-range transportation from the Plain of North China. Source index and positive matrix factorization models provided insights into the complex sources of n-alkanes in Hangzhou. Their major contributors were identified as terrestrial plant releases (32.7%), traffic emissions (28.8%), coal combustion (27.3%), and microbial activity (11.2%). Thus, controlling vehicular emissions and coal burning could be key measures to alleviate n-alkane concentrations in the atmosphere of Hangzhou, as well as other Chinese urban centers.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Fuligem/análise , Monitoramento Ambiental , Material Particulado/análise , Emissões de Veículos/análise , China , Carvão Mineral/análise , Alcanos/análise , Aerossóis/análise , Carbono/análise , Estações do Ano
5.
Nat Commun ; 14(1): 4041, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37419887

RESUMO

A hallmark of mechanical metamaterials has been the realization of negative Poisson's ratios, associated with auxeticity. However, natural and engineered Poisson's ratios obey fundamental bounds determined by stability, linearity and thermodynamics. Overcoming these limits may substantially extend the range of Poisson's ratios realizable in mechanical systems, of great interest for medical stents and soft robots. Here, we demonstrate freeform self-bridging metamaterials that synthesize multi-mode microscale levers, realizing Poisson's ratios surpassing the values allowed by thermodynamics in linear materials. Bridging slits between microstructures via self-contacts yields multiple rotation behaviors of microscale levers, which break the symmetry and invariance of the constitutive tensors under different load scenarios, enabling inaccessible deformation patterns. Based on these features, we unveil a bulk mode that breaks static reciprocity, providing an explicit and programmable way to manipulate the non-reciprocal transmission of displacement fields in static mechanics. Besides non-reciprocal Poisson's ratios, we also realize ultra-large and step-like values, which make metamaterials exhibit orthogonally bidirectional displacement amplification, and expansion under both tension and compression, respectively.

6.
Environ Sci Technol ; 57(46): 17889-17899, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37248194

RESUMO

Dissolved organic matter (DOM) sustains a substantial part of the organic matter transported seaward, where photochemical reactions significantly affect its transformation and fate. The irradiation experiments can provide valuable information on the photochemical reactivity (photolabile, photoresistant, and photoproduct) of molecules. However, the inconsistency of the fate of irradiated molecules among different experiments curtailed our understanding of the roles the photochemical reactions have played, which cannot be properly addressed by traditional approaches. Here, we conducted irradiation experiments for samples from two large estuaries in China. Molecules that occurred in irradiation experiments were characterized by the Fourier transform ion cyclotron resonance mass spectrometry and assigned probabilistic labels to define their photochemical reactivity. These molecules with probabilistic labels were used to construct a learning database for establishing a suitable machine learning (ML) model. We further applied our well-trained ML model to "un-matched" (i.e., not detected in our irradiation experiments) molecules from five estuaries worldwide, to predict their photochemical reactivity. Results showed that numerous molecules with strong photolability can be captured solely by the ML model. Moreover, comparing DOM photochemical reactivity in five estuaries revealed that the riverine DOM chemistry largely determines their subsequent photochemical transformation. We offer an expandable and renewable approach based on ML to compatibly integrate existing irradiation experiments and shed insight into DOM transformation and degradation processes.


Assuntos
Matéria Orgânica Dissolvida , Compostos Orgânicos , Compostos Orgânicos/análise , Fotoquímica , Espectrometria de Massas , Estuários
7.
Medicine (Baltimore) ; 101(42): e31151, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36281175

RESUMO

The downward referral platform in the regional medical alliance has provided more possibilities to follow-up rehabilitation and transitional care for increasing stroke survivors, which also has the most contributions in the rational use of resources and health promotion of stroke survivors. However the downward referral rate is low compared to upward referral. At present, no scholars have explored the downward referral experiences of medical demanders from the perspective of qualitative study, and these experiences may also most truly reflect the influencing factors of their unwillingness to downward referral. Therefore, this study explored the subjective experiences of stroke caregivers who had experienced the downward referral, because stroke attacks often lead to lack of autonomy of patients themselves, making it difficult to complete interviews with them. A descriptive phenomenological study was adopted. A purposive sampling strategy was used to recruit 13 stroke caregivers. Interviews were guided by a semi-structured interview-guide encouraging interviewees to reflect on their experiences with downward referral. Coliazzi's data analysis process was applied. The analysis of the data revealed 4 themes: coping challenges; disrupted information; gaps in medical and nursing transition, and potential enabling factors. The results of this study showed that the lack of knowledge of medical alliance, non-sharing of medical information and non-homogeneousness of medical quality were identified to be impeding positive attitude towards downward referral and be factors of bad experiences. Of course, the interviewees had positive experiences such as smooth referral and comfortable environment. These may be potential enabling factors to their attitude towards downward referral. The challenges and needs of medical demanders after downward referral are worthy of attention, and these should be solved by corresponding measures to improve the downward referral rate and referral experiences.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Cuidadores , Acidente Vascular Cerebral/terapia , Encaminhamento e Consulta , Pesquisa Qualitativa
8.
Proc Natl Acad Sci U S A ; 119(10): e2120563119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35235446

RESUMO

SignificanceCreating structures to realize function-oriented mechanical responses is desired for many applications. Yet, the use of a single material phase and heuristics-based designs may fail to attain specific target behaviors. Here, through a deterministic algorithmic procedure, multiple materials with dissimilar properties are intelligently synthesized into composite structures to achieve arbitrary prescribed responses. Created structures possess unconventional geometry and seamless integration of multiple materials. Despite geometric complexity and varied material phases, these structures are fabricated by multimaterial manufacturing, and tested to demonstrate that wide-ranging nonlinear responses are physically and accurately realized. Upon heteroassembly, resulting structures provide architectures that exhibit highly complex yet navigable responses. The proposed strategy can benefit the design of function-oriented nonlinear mechanical devices, such as actuators and energy absorbers.

9.
Environ Pollut ; 299: 118895, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35085656

RESUMO

Sixteen paired surface sediment samples (0-5 cm, n = 32) covering upstream to downstream of water-level-fluctuation zone of Three Gorges Reservoir, China were collected in March 2018 (following six months of submergence) and September 2018 (after six months of exposure). Seventeen per- and poly-fluoroalkyl substances (PFASs) were quantified to evaluate contamination characteristics, apportion source categories and estimate mass inventory and loadings. The concentration of ΣPFASs ranged from 0.26 to 0.82 ng·g-1 at high water-level (HWL) and 0.46-1.53 ng·g-1 at low water-level (LWL). Perfluorooctanoic acid (PFOA, mean: 0.32 ng·g-1) and perfluorooctane sulfonate (PFOS, mean: 0.12 ng·g-1) dominated, accounting 44.9% and 16.3% of the total PFASs, respectively. The distribution of PFASs was more influenced by anthropogenic activities than physicochemical parameters of the sediments. Positive matrix factorization (PMF) identified PFOA-based products was the major sources (40.1% and 38.6%, respectively). Besides, the direct sources of PFOA-, PFOS-, PFNA-and PFBA-based products played the predominant role, while the indirect degradation of precursors contributed relatively little. The sediment (0-5 cm) mass inventory of PFASs at LWL (57.5 kg) was higher than HWL (39.3 kg). The annual mass loadings of the total PFASs, PFOA, PFOS, perfluoroundecanoic acid (PFUdA) and perfluorononanoic acid (PFNA) from the upstream to the middle-lower reaches of Yangtze River were 27.4 kg, 11.1 kg, 4.63 kg, 2.89 kg and 2.57 kg, respectively. This study could provide the basic datasets of PFASs in surface sediments of the TGR, and also indicate an important transport of PFASs from upstream to the lower reaches, which should be further studied as well.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Ácidos Alcanossulfônicos/análise , China , Monitoramento Ambiental , Fluorocarbonos/análise , Rios/química , Água , Poluentes Químicos da Água/análise
10.
Environ Res ; 204(Pt D): 112151, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34634311

RESUMO

The dry and wet depositions of polycyclic aromatic hydrocarbons (PAHs) and related derivatives have rarely been characterized separately. Parent, oxygenated and nitrated PAHs (PAHs, OPAHs and NPAHs) have been measured in monthly-averaged wet and dry deposition samples collected from January to December 2019 in urban Chongqing. The annual average concentrations of Æ©17PAHs, Æ©9OPAHs and Æ©9NPAHs in wet deposition samples were 457 ± 375, 1311 ± 1416 and 8.25 ± 10.2 ng/L, respectively, with significant monthly variations introduced by rainfall and air-borne particle deposition. Most PAHs species were associated with the particulate phase in wet deposition, while OPAHs and NPAHs were mainly distributed in the dissolved phase, probably due to the lower octanol-water partitioning coefficient of N/OPAHs than that of PAHs. Annual deposition fluxes of PAHs, OPAHs and NPAHs in dry deposition were 25264, 25310 and 388 ng/m2/yr, respectively, higher than those in wet deposition (9869, 24083 and 207 ng/m2/yr). This indicates that PACs, especially PAHs, were removed from the atmosphere mainly via dry deposition. The contributions of wet deposition to total deposited PACs were larger for months with higher precipitation and for PACs with higher molecular weight. Composition pattern and temporal variation results indicated that wet deposition fluxes were mainly affected by precipitation-related particle deposition and chemical properties (e.g., water solubility), while dry deposition fluxes were affected more by factors such as gas/particle partitioning, particle size distribution and physicochemical properties of PACs. Principle component analysis combined with diagnostic ratios revealed that PACs in atmospheric deposition samples were from vehicle emission (48.6%), coal combustion (13.4%), petrogenic source (5.9%) and secondary formation (32.1%).


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Compostos Policíclicos , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental/métodos , Hidrocarbonetos Policíclicos Aromáticos/análise , Estações do Ano
11.
Environ Sci Pollut Res Int ; 29(12): 18282-18297, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34687419

RESUMO

The Three Gorges Reservoir (TGR) plays a crucial role in providing electricity for mega-cities across China. However, since the impoundment was completed in 2006, attention to environmental concerns has also been intensive. In order to determine the distribution, sources, and pollution status of trace elements in the water fluctuation zone of the TGR following ten years of repeated "submergence" and "exposure", we systematically collected 16 paired surface sediment samples (n = 32) covering the entire main body of the TGR in March 2018 (following 6 months of submergence) and September 2018 (after 6 months of exposure), and quantitatively analyzed 13 elements (e.g., Mn, Fe, V, Cr, Ni, Cu, Zn, As, Sr, Y, Zr, Ba, and Pb) using X-ray fluorescence spectrophotometry (XRF). The results showed that, except for Sr, concentrations of trace metals following submergence were generally higher than those after exposure due to the less settling of suspended solids at the faster flow velocity during the drawdown period. Assessment using enrichment factors (EFs) and a geo-accumulation index (Igeo) both characterized a relatively serious anthropogenic pollution status of metals in the upper reaches of the TGR with respect to the middle-lower reaches. Source apportionment by positive matrix factorization (PMF) analysis indicated that agricultural activities (24.8 and 24.3%, respectively) and industrial emissions (24.5 and 22.9%, respectively) were the two major sources in these two periods, followed by natural sources, domestic sewage, and ore mining. Ecological risk assessment showed that metalloid arsenic (As) could be the main potential issue of risk to aquatic organisms and human health. A new source-specific risk assessment method (pRI) combined with PMF revealed that agricultural activities could be the major source of potential ecological risk and should be prioritized as the focus of metal/metalloid risk management in the TGR.


Assuntos
Metais Pesados , Oligoelementos , Poluentes Químicos da Água , China , Monitoramento Ambiental/métodos , Sedimentos Geológicos , Humanos , Metais Pesados/análise , Medição de Risco , Oligoelementos/análise , Água/análise , Poluentes Químicos da Água/análise
12.
Nat Commun ; 12(1): 5766, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599186

RESUMO

Engineered micro- and nanomechanical resonators with ultra-low dissipation constitute a promising platform for various quantum technologies and foundational research. Traditionally, the improvement of the resonator's performance through nanomechanical structural engineering has been driven by human intuition and insight. Such an approach is inefficient and leaves aside a plethora of unexplored mechanical designs that potentially achieve better performance. Here, we use a computer-aided inverse design approach known as topology optimization to structurally design mechanical resonators with optimized performance of the fundamental mechanical mode. Using the outcomes of this approach, we fabricate and characterize ultra-coherent nanomechanical resonators with, to the best of our knowledge, record-high Q ⋅ f products for their fundamental mode (where Q is the quality factor and f is the frequency). The proposed approach - which can also be used to improve phononic crystals and coupled-mode resonators - opens up a new paradigm for designing ultra-coherent micro- and nanomechanical resonators, enabling e.g. novel experiments in fundamental physics and extreme sensing.

13.
Chemosphere ; 285: 131462, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34252809

RESUMO

Seventy-seven PM2.5 samples were collected at an urban site (Chongqing University Campus A) in October 2015 (autumn), December 2015 (winter), March 2016 (spring), and August 2016 (summer). These samples were analysed for organic carbon (OC), elemental carbon (EC), and their associated char, soot, 16 PAHs, and 28 n-alkanes to trace sources, and atmospheric transport pathways. The annual average of OC, EC, char, soot, ΣPAHs, and Σn-alkanes were 20.75 µg/m3, 6.18 µg/m3, 5.43 µg/m3, 0.75 µg/m3, 38.29 ng/m3, and 328.69 ng/m3, respectively. OC, ΣPAHs, and Σn-alkane concentrations were highest in winter and lowest in summer. EC, char, and soot concentrations were highest in autumn and lowest in winter. Source apportionment via positive matrix factorization (PMF) indicated that coal/biomass combustion-natural gas emissions (23.8%) and motor vehicle exhaust (20.2%) were the two major sources, followed by diesel and petroleum residue (21.1%), natural biogenic sources (17.7%), and evaporative/petrogenic sources (17.2%). The highest source contributor in autumn and winter was evaporative/petrogenic sources (30.6%) and natural biogenic sources (34.5%), respectively, whereas diesel engine emission contributed the most in spring and summer (32.1% and 38.0%, respectively). Potential source contribution function (PSCF) analysis identified southeastern Sichuan and northwestern Chongqing as the major potential sources of these pollutants. These datasets provide critical information for policymakers to establish abatement strategies for the reduction of carbonaceous pollutant emissions and improve air quality in Chongqing and other similar urban centres across China.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Carbono/análise , China , Monitoramento Ambiental , Humanos , Material Particulado/análise , Estações do Ano , Emissões de Veículos/análise
14.
Huan Jing Ke Xue ; 42(8): 3595-3603, 2021 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-34309246

RESUMO

In late August 2020, a period of O3 pollution occurred in the main urban area of Chongqing and lasted for approximately 2 weeks (till early September). Ambient air samples, collected using Summa Canisters and DNPH sampling columns at three observation sites in the main urban area, were used to study the composition, photochemical reaction activity, and source apportionment of volatile organic compounds (VOCs) during the period of O3 pollution. The results showed that the mean volume fraction of TVOCs in the main urban area of Chongqing during the observation period was 45.08×10-9, and the components were ranked by volume fraction in the following order:OVOCs, alkanes, halohydrocarbons, alkenes, aromatics, and alkynes. Formaldehyde, ethylene, and acetone made up the higher volume fraction of VOCs, together accounting for more than 30% of TVOCs. OVOCs and alkenes contributed more to · OH loss rate (Li·OH) and ozone formation potential (OFP) and were the key VOCs components for ozone generation. The main active species in the OVOCs component were formaldehyde, acetaldehyde, and acrolein; the main active species in the alkene component were isoprene, ethylene, and n-butene. The ratio of xylene to ethylbenzene in VOCs was low, and they showed a significant correlation, indicating that the VOCs air mass in the main urban area was highly aging and affected by long-distance transmission from other areas. The source apportionment results of the PMF model showed five main sources of VOCs, namely secondary generation (27.67%), vehicle exhaust (26.56%), industrial emission (17.86%), plant (14.51%), and fossil fuel combustion (13.4%).


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Ozônio/análise , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análise
15.
Opt Express ; 29(12): 18950-18965, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34154139

RESUMO

The HaiYang-1C coastal zone imager (CZI) consists of two independent cameras with a total image swath of approximately 1000 km. In order to obtain precise imaging parameters of the CZI cameras, a feasible in-orbit geometric calibration approach with multiple fields is presented. First, the master CCD is calibrated with a calibration field. Then, the slave CCDs are respectively calibrated with different fields. Finally, the calibrated internal shift parameters of the slave CCDs are adjusted with tie points between adjacent sub-images. Seven HaiYang-1C CZI images were tested. The experimental results showed that the imaging parameters calibrated with the presented approach could perform as well as those calibrated with the conventional approach with a single field. However, the total swath of the calibration fields could be reduced from approximately 1000 km to 300 km. The application difficulties in collecting satisfactory calibration sub-images could be thereby significantly reduced in the geometric calibration.

16.
Environ Pollut ; 268(Pt B): 115693, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33002789

RESUMO

An increase in polycyclic aromatic hydrocarbon (PAH) pollution poses significant challenges to human and ecosystem health in the Three Gorges Reservoir (TGR) of the Yangtze River. Based on the combination of PAH analysis with qPCR and high-throughput sequencing of bacteria, 32 topsoil samples collected from 16 sites along the TGR were used to investigate the distribution and biodegradation pathways of PAHs in the water-level-fluctuation zone (WLFZ). The results indicated that the concentrations of PAHs were 43.8-228.2 and 30.8-206.3 ng/g soil (dry weight) under the high- and low-water-level (HWL and LWL) conditions, respectively. The PAH concentration in urban areas was higher than that in rural areas. Under both the HWL and LWL conditions, the abundance of the bamA gene, a biomarker of anaerobic PAH biodegradation, was significantly higher than that of the ring-hydroxylating-dioxygenase (RHD) gene, a biomarker of aerobic PAH biodegradation. The abundance of the bamA gene was significantly positively correlated with PAHs (R2 = 0.8), and the biodegradation percentage of PAHs incubated anaerobically was greater than that in the aerobically incubated microcosm experiments. These data implicated a key role of the anaerobic pathway in PAH biodegradation. Co-occurrence network analysis suggested that anaerobic Anaerolineaceae, Dechloromonas, Bacteroidetes_vadin HA17 and Geobacter were key participants in the biodegradation of PAHs. The diversity analysis of functional bacteria based on the bamA gene and microcosm experiments further demonstrated that nitrate was the primary electron acceptor for PAH biodegradation. These findings provide a new perspective on the mechanism of PAH biodegradation in the TGR and knowledge that can be used to develop strategies for environmental management.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Biodegradação Ambiental , China , Ecossistema , Humanos , Interações Microbianas , Nitratos , Hidrocarbonetos Policíclicos Aromáticos/análise , Água , Poluentes Químicos da Água/análise
17.
Environ Sci Process Impacts ; 22(2): 239-255, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-31916559

RESUMO

A bibliometric analysis of published papers with the key words "positive matrix factorization" and "source apportionment" in 'Web of Science', reveals that more than 1000 papers are associated with this research and that approximately 50% of these were produced in Asia. As a receptor-based model, positive matrix factorization (PMF) has been widely used for source apportionment of various environmental pollutants, such as persistent organic pollutants (POPs), heavy metals, volatile organic compounds (VOCs) as well as inorganic cations and anions in the last decade. In this review, based on the papers mainly from 2008 to 2018 that focused on source apportionment of pollutants in different environmental media, we provide a comparison and summary of the source categories of typical environmental pollutants, with a special focus on polycyclic aromatic hydrocarbons (PAHs), apportioned using PMF. Based on the statistical average, coal combustion and vehicular emission, are shown to be the two most common sources of PAHs, and contribute much more to emissions than other sources, such as biomass burning, biogenic sources and waste incineration. Heavy metals were mainly from agricultural activities, industrial and vehicular emissions and mining activities. Quantitative source apportionment on pollutants such as VOCs and particulate matter were also apportioned, showing a prominent contribution from fossil-fuel combustion. We conclude that, aside from natural sources, abatement strategies should be focused on changes in energy structure and industrial activities, especially in China. Source apportionment of typical POPs including polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), halogenated flame retardants (HFRs) and perfluorinated compounds (PFCs) is less comprehensive and further study is required.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Dibenzodioxinas Policloradas , Hidrocarbonetos Policíclicos Aromáticos , Ásia , China , Dibenzofuranos , Monitoramento Ambiental
18.
Phys Rev Lett ; 122(23): 234502, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31298901

RESUMO

An acoustic topological insulator (TI) is synthesized using topology optimization, a free material inverse design method. The TI appears spontaneously from the optimization process without imposing explicit requirements on the existence of pseudospin-1/2 states at the TI interface edge, or the Chern number of the topological phases. The resulting TI is passive, consisting of acoustically hard members placed in an air background and has an operational bandwidth of ≈12.5% showing high transmission. Further analysis demonstrates confinement of more than 99% of the total field intensity in the TI within at most six lattice constants from the TI interface. The proposed design hereby outperforms a reference from recent literature regarding energy transmission, field confinement, and operational bandwidth.

19.
Mol Med Rep ; 19(6): 4753-4760, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31059085

RESUMO

Increased plasma levels of homocysteine (Hcy) can cause severe damage to vascular endothelial cells. Hcy­induced endothelial cell dysfunction contributes to the occurrence and development of human cerebrovascular diseases (CVDs). Our previous studies have revealed that astaxanthin (ATX) exhibits novel cardioprotective activity against Hcy­induced cardiotoxicity in vitro and in vivo. However, the protective effect and mechanism of ATX against Hcy­induced endothelial cell dysfunction requires further investigation. In the present study, treatment of human umbilical vascular endothelial cells (HUVECs) with Hcy inhibited the migration, invasive and tube formation potentials of these cells in a dose­dependent manner. Hcy treatment further induced a time­dependent increase in the production of reactive oxygen species (ROS), and downregulated the expression of vascular endothelial growth factor (VEGF), phosphorylated (p)­Tyr­VEGF receptor 2 (VEGFR2) and p­Tyr397­focal adhesion kinase (FAK). On the contrary, ATX pre­treatment significantly inhibited Hcy­induced cytotoxicity and increased HUVEC migration, invasion and tube formation following Hcy treatment. The mechanism of action may involve the effective inhibition of Hcy­induced ROS generation and the recovery of FAK phosphorylation. Collectively, our findings suggested that ATX could inhibit Hcy­induced endothelial dysfunction by suppressing Hcy­induced activation of the VEGF­VEGFR2­FAK signaling axis, which indicates the novel therapeutic potential of ATX in treating Hcy­mediated CVD.


Assuntos
Células Endoteliais/efeitos dos fármacos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Homocisteína/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Transtornos Cerebrovasculares/tratamento farmacológico , Transtornos Cerebrovasculares/metabolismo , Transtornos Cerebrovasculares/patologia , Relação Dose-Resposta a Droga , Regulação para Baixo , Células Endoteliais/patologia , Quinase 1 de Adesão Focal/metabolismo , Humanos , Fosforilação , Xantofilas/antagonistas & inibidores
20.
Environ Pollut ; 245: 771-779, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30502707

RESUMO

75 paired TSP and PM2.5 samples were collected over four seasons on Huaniao Island (HNI), an island that lies downwind of continental pollutants emitted from mainland China to the East China Sea (ECS). These samples were analyzed for organic carbon (OC) and elemental carbon (EC), with a special focus on char-EC (char) and soot-EC (soot), to understand their sources, and the scale and extent of pollution and dry deposition over the coastal ECS. The results showed that char concentrations in PM2.5 and TSP averaged from 0.13 to 1.01 and 0.31-1.44 µg m-3; while for soot, they were from 0.03 to 0.21 and 0.16-0.56 µg m-3, respectively. 69.0% of the char and 36.4% of the soot were present in PM2.5. The char showed apparent seasonal variations, with highest concentrations in winter and lowest in summer; while soot displayed maximum concentrations in fall and minimum in summer. The char/soot ratios in PM2.5 averaged from 3.29 to 17.22; while for TSP, they were from 1.20 to 7.07. Both of the ratios in PM2.5 and TSP were highest in winter and lowest in fall. Comparisons of seasonal variations in OC/EC and char/soot ratios confirmed that char/soot may be a more effective indicator of carbonaceous aerosol source identification than OC/EC. Annual average atmospheric dry deposition fluxes of OC and EC into ECS were estimated to be 229 and 107 µg m-2 d-1, respectively, and their deposition fluxes significantly increased during episodes. It was estimated that the loadings of OC + EC and EC accounted for 1.3% and 4.1% of the total organic carbon and EC in ECS surface sediments, respectively, implying a relatively small contribution of OC and EC dry deposition to organic carbon burial. This finding also indicates a possibly more important contribution of wet deposition to organic carbon burial in sediments of ECS, and this factor should be considered for future study.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Carbono/análise , China , Poluentes Ambientais , Poluição Ambiental , Tamanho da Partícula , Material Particulado/análise , Estações do Ano , Fuligem/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA