Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; : e2401655, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38966887

RESUMO

Despite the advantages of high tissue penetration depth, selectivity, and non-invasiveness of photothermal therapy for cancer treatment, developing NIR-II photothermal agents with desirable photothermal performance and advanced theranostics ability remains a key challenge. Herein, a universal surface modification strategy is proposed to effectively improve the photothermal performance of vanadium carbide MXene nanosheets (L-V2C) with the removal of surface impurity ions and generation of mesopores. Subsequently, MnOx coating capable of T1-weighted magnetic resonance imaging can be in situ formed through surface redox reaction on L-V2C, and then, stable nanoplatforms (LVM-PEG) under physiological conditions can be obtained after further PEGylation. In the tumor microenvironment irradiated by NIR-II laser, multivalent Mn ions released from LVM-PEG, as a reversible electronic station, can consume the overexpression of glutathione and catalyze a Fenton-like reaction to produce ·OH, resulting in synchronous cellular oxidative damage. Efficient synergistic therapy promotes immunogenic cell death, improving tumor-related immune microenvironment and immunomodulation, and thus, LVM-PEG can demonstrate high accuracy and excellent anticancer efficiency guided by multimodal imaging. As a result, this study provides a new approach for the customization of 2D surface strategies and the study of synergistic therapy mechanisms, highlighting the application of MXene-based materials in the biomedical field.

3.
J Environ Manage ; 359: 121107, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38728984

RESUMO

Microbial induced concrete corrosion (MICC) is the primary deterioration affecting global sewers. Disentangling ecological mechanisms in the sewer system is meaningful for implementing policies to protect sewer pipes using trenchless technology. It is necessary to understand microbial compositions, interaction networks, functions, alongside assembly processes in sewer microbial communities. In this study, sewer wastewater samples and microbial samples from the upper part (UP), middle part (MP) and bottom part (BP) of different pipes were collected for 16S rRNA gene amplicon analysis. It was found that BP harbored distinct microbial communities and the largest proportion of unique species (1141) compared to UP and MP. The community in BP tended to be more clustered. Furthermore, significant differences in microbial functions existed in different spatial locations, including the carbon cycle, nitrogen cycle and sulfur cycle. Active microbial sulfur cycling indicated the corrosion risk of MICC. Among the environmental factors, the oxidation‒reduction potential drove changes in BP, while sulfate managed changes in UP and BP. Stochasticity dominated community assembly in the sewer system. Additionally, the sewer microbial community exhibited numerous positive links. BP possessed a more complex, modular network with higher modularity. These deep insights into microbial ecology in the sewer system may guide engineering safety and disaster prevention in sewer infrastructure.


Assuntos
Esgotos , Esgotos/microbiologia , RNA Ribossômico 16S/genética , Águas Residuárias/microbiologia , Ecologia , Corrosão , Microbiota
4.
J Adolesc ; 96(6): 1212-1223, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38622930

RESUMO

INTRODUCTION: Following the conservation of resource theory and natural stress reduction theory, the current study investigated mediated pathways, reverse mediated pathways, and reciprocal pathways between connectedness to nature, depressive symptoms, and adolescent learning burnout via a half-longitudinal analysis, and discussed gender differences in the three models. METHODS: Two waves of data were collected in December 2022 (T1) and June 2023 (T2) for this study. The sample consisted of 1092 Chinese adolescents (52.20% girls, Mage = 13.03, SD = 1.43). Semi-longitudinal analyses were conducted to examine the relationship between connectedness to nature, depressive symptoms, and adolescent academic burnout. RESULTS: The results indicated that connectedness to nature can serve as a positive resource to alleviate the levels of depressive symptoms among adolescents and thereby decrease learning burnout. However, the protective effect of connectedness to nature was smaller, and the decreasing effect of learning burnout on connectedness to nature was stronger than the alleviating effect of connectedness to nature on learning burnout. Additionally, the study found that depressive symptoms and academic burnout have a mutually reinforcing effect over time and that the effects of this interaction are more pronounced in females. CONCLUSIONS: The present study emphasizes the protective role of nature connectedness and the detrimental effects of learning burnout in adolescents.


Assuntos
Depressão , Humanos , Adolescente , Feminino , Masculino , Estudos Longitudinais , Depressão/psicologia , China , Aprendizagem , Esgotamento Psicológico/psicologia , Natureza , Fatores Sexuais
5.
Int J Biol Macromol ; 262(Pt 2): 130033, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342261

RESUMO

Antibacterial and active packaging materials have gained significant research attention in response to the growing interest in food packaging. In this investigation, we developed hydrogel packaging materials with antibacterial and antioxidant properties by incorporating chitooligosaccharide (COS) and fish skin gelatin (FSG) nanofiber membranes, which readily absorbed water and exhibited swelling characteristics. The nanofiber membranes were fabricated by electrospinning technology, embedding COS within FSG, and subsequently crosslinked through the Maillard reaction facilitated by the addition of glucose. The behavior of conductivity, viscosity, and surface tension in the spinning solutions was analyzed to understand their variation patterns. Scanning electron microscopy (SEM) results revealed that the crosslinked COS/FSG nanofiber membranes possessed a uniform yet disordered fiber structure, with the diameter of the nanofibers increasing as the COS content increased. Remarkably, when the COS content reached 25 %, the COS/FSG nanofiber membranes (CF-C-25) exhibited a suitable fiber diameter of 437.16 ± 63.20 nm. Furthermore, the thermal crosslinking process involving glucose supplementation enhanced the hydrophobicity of CF-C-25. Upon hydration, the CF-H-25 hydrogel displayed a distinctive porous structure, exhibiting a remarkable swelling rate of 954 %. Notably, the inclusion of COS significantly augmented the antibacterial and antioxidant properties of the hydrogel-based nanofiber membranes. CF-H-25 demonstrated an impressive growth inhibition of 90.56 ± 5.91 % against E. coli, coupled with excellent antioxidant capabilities. In continuation, we performed a comprehensive analysis of the total colony count, pH, TVB-N, and TBA of crucian carp. The CF-H-25 hydrogel proved highly effective in extending the shelf life of crucian carp by 2-4 days, suggesting its potential application as an edible membrane for aquatic product packaging.


Assuntos
Quitosana , Nanofibras , Oligossacarídeos , Sulfanilamidas , Animais , Nanofibras/química , Gelatina/química , Antioxidantes/farmacologia , Antioxidantes/química , Escherichia coli , Hidrogéis/farmacologia , Antibacterianos/farmacologia , Quitina , Glucose
6.
Food Funct ; 15(4): 2181-2196, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38315103

RESUMO

(-)-Epigallocatechin-3-gallate (EGCG) is a major polyphenol in tea and exerts several health-promoting effects. It easily autoxidizes into complex polymers and becomes deactivated due to the presence of multiple phenolic hydroxyl structures. Nonetheless, the morphology and biological activity of complex EGCG polymers are yet to be clarified. The present study demonstrated that EGCG autoxidation self-assembled nanoparticles (ENPs) exhibit antioxidant activity in vitro and hepatic REDOX homeostasis regulation activity in vivo. Also, the formation of ENPs during the EGCG autoxidation process was based on the intermolecular interaction forces that maintain the stability of the nanoparticles. Similar to EGCG, ENPs are scavengers of reactive oxygen species and hydroxyl radicals in vitro and also regulate hepatic REDOX activity through liver redox enzymes, including thioredoxin reductase (TrxR), thioredoxin (Trx), glutathione reductase (GR), glutaredoxin (Grx), and glutathione S-transferase (GST) in vivo. Moreover, ENPs activate the NRF2 antioxidant-responsive element pathway, exerting a detoxification effect at high doses. Unlike EGCG, ENPs do not cause liver damage at low doses and also maintain liver biosafety at high doses through self-assembly, forming large particles, which is supported by the unchanged levels of liver damage biomarkers, including serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), liver γ-phosphorylated histone 2AX (γ-H2AX), and P53-related genes (Thbs, MDM2, P53, and Bax). Collectively, these findings revealed that ENPs, with adequate biosafety and regulation of hepatic redox activity in vivo, may serve as substitutes with significant potential for antioxidant applications or as food additives to overcome the instability and liver toxicity of EGCG.


Assuntos
Catequina , Catequina/análogos & derivados , Nanopartículas , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Fígado/metabolismo , Oxirredução , Catequina/farmacologia , Catequina/metabolismo , Polímeros/farmacologia
7.
Environ Sci Pollut Res Int ; 31(9): 13075-13088, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38240967

RESUMO

Sewer systems play vital roles in wastewater treatment facilities, and the microbial communities contribute significantly to the transformation of domestic wastewater. Therefore, this study conducted a 180-day experiment on a sewer system and utilized the high-throughput sequencing technology to characterize the microbial communities. Additionally, community assembly analysis was performed to understand the early-stage dynamics within the sewer system. The results demonstrated that the overall diversity of microbial communities exhibited fluctuations as the system progressed. The dominant phyla observed were Chloroflexi, Bacteroidetes, Firmicutes, and Proteobacteria, accounting for over 85.4% of the total relative abundances. At the genus level, bacteria associated with fermentation displayed a high relative abundance, particularly during days 75 to 180. A random-forest machine-learning model identified a group of microbes that confirmed the substantial contribution of fermentation. During the process of fermentation, microorganisms predominantly utilized propionate formation as the main pathway for acidogenesis, followed by acetate and butyrate formation. In terms of nitrogen and sulfur cycles, dissimilatory nitrate reduction and assimilatory sulfate reduction played significant roles. Furthermore, stochastic ecological processes had a dominant effect during the experiment. Dispersal limitation primarily governed the assembly process almost the entire experimental period, indicating the strong adaptability and metabolic plasticity of microorganisms in response to environmental variations. This experiment provides valuable insights into the metabolic mechanisms and microbial assembly associated with sewer systems.


Assuntos
Bactérias , Microbiota , Bactérias/metabolismo , Proteobactérias , Águas Residuárias , Bacteroidetes
8.
Food Funct ; 15(4): 2052-2063, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38293823

RESUMO

Green tea polyphenol (-)-Epigallocatechin-3-gallate (EGCG) has been well studied for its biological activities in the prevention of chronic diseases. However, the biological activities of EGCG oxidation-derived polymers remain unclear. Previously, we found that these polymers accumulated in intraperitoneal tissues after intraperitoneal injection and gained an advantage over native EGCG in increasing insulin sensitivity via regulating the renin-angiotensin system (RAS) in type 2 diabetic mice. The present study determined the pro-apoptosis activities and anticancer mechanisms of the EGCG oxidation-derived polymer preparation (the >10 kDa EGCG polymers) in digestive tract cancer cells. Upon incubation of the >10 kDa EGCG polymers with CaCo2 colon cancer cells, these polymers coated the cell surface and regulated multiple components of the RAS in favor of cancer inhibition, including the downregulation of angiotensin-converting enzyme (ACE), angiotensin-II (AngII) and AngII receptor type 1 (AT1R) in the pro-tumor axis, as well as the upregulation of angiotensin-converting enzyme 2 (ACE2) and angiotensin1-7 (Ang(1-7)) in the anti-tumor axis. The treatment also markedly increased angiotensinogen (AGT), which is the precursor of the angiotensin peptides. The regulation of these RAS components occurred prior to apoptosis. Similar pro-apoptotic mechanisms of the >10 kDa EGCG polymers, were also observed in TCA8113 oral cancer cells. The >10 kDa EGCG polymers exhibited compromised activities in scavenging or initiating reactive oxygen species compared to EGCG, but gained a higher reactivity toward sulfhydryl groups, including protein cysteine thiols. We propose that the polymers bind onto the cell surface and regulate multiple RAS components by reacting with the sulfhydryl groups on the ectodomains of transmembrane proteins.


Assuntos
Catequina/análogos & derivados , Diabetes Mellitus Experimental , Neoplasias , Humanos , Camundongos , Animais , Sistema Renina-Angiotensina , Células CACO-2 , Angiotensina II/farmacologia , Apoptose , Trato Gastrointestinal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA