Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; : e202400105, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639074

RESUMO

Cell senescence is defined as irreversible cell cycle arrest, which can be triggered by telomere shortening or by various types of genotoxic stress. Induction of senescence is emerging as a new strategy for the treatment of cancer, especially when sequentially combined with a second senolytic drug capable of killing the resulting senescent cells, however severely suffering from the undesired off-target side effects from the senolytic drugs. Here, we prepare a bimetalic platinum-aluminum salen complex (Alumiplatin) for cancer therapy-a combination of pro-senesence chemotherapy with in situ senotherapy to avoid the side effects. The aluminum salen moiety, as a G-quadruplex stabilizer, enhances the salen's ability to induce cancer cell senescence and this phenotype is in turn sensitive to the cytotoxic activity of the monofunctional platinum moiety. It exhibits an excellent capability for inducing senescence, a potent cytotoxic activity against cancer cells both in vitro and in vivo, and an improved safety profile compared to cisplatin. Therefore, Alumiplatin may be a good candidate to be further developed into safe and effective anticancer agents. This novel combination of cell senescence inducers with genotoxic drugs revolutionizes the therapy options of designing multi-targeting anticancer agents to improve the efficacy of anticancer therapies.

2.
Proc Natl Acad Sci U S A ; 121(14): e2316564121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38527200

RESUMO

Sulfur in nature consists of two abundant stable isotopes, with two more neutrons in the heavy one (34S) than in the light one (32S). The two isotopes show similar physicochemical properties and are usually considered an integral system for chemical research in various fields. In this work, a model study based on a Li-S battery was performed to reveal the variation between the electrochemical properties of the two S isotopes. Provided with the same octatomic ring structure, the cyclo-34S8 molecules form stronger S-S bonds than cyclo-32S8 and are more prone to react with Li. The soluble Li polysulfides generated by the Li-34S conversion reaction show a stronger cation-solvent interaction yet a weaker cation-anion interaction than the 32S-based counterparts, which facilitates quick solvation of polysulfides yet hinders their migration from the cathode to the anode. Consequently, the Li-34S cell shows improved cathode reaction kinetics at the solid-liquid interface and inhibited shuttle of polysulfides through the electrolyte so that it demonstrates better cycling performance than the Li-32S cell. Based on the varied shuttle kinetics of the isotopic-S-based polysulfides, an electrochemical separation method for 34S/32S isotope is proposed, which enables a notably higher separation factor than the conventional separation methods via chemical exchange or distillation and brings opportunities to low-cost manufacture, utilization, and research of heavy chalcogen isotopes.

3.
Molecules ; 29(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38398629

RESUMO

Strophanthidin (SPTD), one of the cardiac glycosides, is refined from traditional Chinese medicines such as Semen Lepidii and Antiaris toxicaria, and was initially used for the treatment of heart failure disease in clinic. Recently, SPTD has been shown to be a potential anticancer agent, but the underlying mechanism of action is poorly understood. Herein, we explored the molecular mechanism by which SPTD exerts anticancer effects in A549 human lung adenocarcinoma cells by means of mass spectrometry-based quantitative proteomics in combination with bioinformatics analysis. We revealed that SPTD promoted the expression of tumor necrosis factor (TNF)-related apoptosis-inducing ligand receptor 2 (TRAIL-R2, or DR5) in A549 cells to activate caspase 3/6/8, in particular caspase 3. Consequently, the activated caspases elevated the expression level of apoptotic chromatin condensation inducer in the nucleus (ACIN1) and prelamin-A/C (LMNA), ultimately inducing apoptosis via cooperation with the SPTD-induced overexpressed barrier-to-autointegration factor 1 (Banf1). Moreover, the SPTD-induced DEPs interacted with each other to downregulate the p38 MAPK/ERK signaling, contributing to the SPTD inhibition of the growth of A549 cells. Additionally, the downregulation of collagen COL1A5 by SPTD was another anticancer benefit of SPTD through the modulation of the cell microenvironment.


Assuntos
Adenocarcinoma de Pulmão , Estrofantidina , Humanos , Estrofantidina/farmacologia , Caspase 3/farmacologia , Linhagem Celular Tumoral , Apoptose , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Adenocarcinoma de Pulmão/tratamento farmacológico , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Microambiente Tumoral , Proteínas Nucleares
4.
Small ; : e2308715, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38412419

RESUMO

Biomolecular piezoelectric materials show great potential in the field of wearable and implantable biomedical devices. Here, a self-assemble approach is developed to fabricating flexible ß-glycine piezoelectric nanofibers with interfacial polarization locked aligned crystal domains induced by Nb2 CTx nanosheets. Acted as an effective nucleating agent, Nb2 CTx nanosheets can induce glycine to crystallize from edges toward flat surfaces on its 2D crystal plane and form a distinctive eutectic structure within the nanoconfined space. The interfacial polarization locking formed between O atom on glycine and Nb atom on Nb2 CTx is essential to align the ß-glycine crystal domains with (001) crystal plane intensity extremely improved. This ß-phase glycine/Nb2 CTx nanofibers (Gly-Nb2 C-NFs) exhibit fabulous mechanical flexibility with Young's modulus of 10 MPa, and an enhanced piezoelectric coefficient of 5.0 pC N-1 or piezoelectric voltage coefficient of 129 × 10-3 Vm N-1 . The interface polarization locking greatly improves the thermostability of ß-glycine before melting (≈210°C). A piezoelectric sensor based on this Gly-Nb2 C-NFs is used for micro-vibration sensing in vivo in mice and exhibits excellent sensing ability. This strategy provides an effective approach for the regular crystallization modulation for glycine crystals, opening a new avenue toward the design of piezoelectric biomolecular materials induced by 2D materials.

5.
Angew Chem Int Ed Engl ; 63(5): e202316087, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38093609

RESUMO

Solid-state lithium-sulfur batteries have shown prospects as safe, high-energy electrochemical storage technology for powering regional electrified transportation. Owing to limited ion mobility in crystalline polymer electrolytes, the battery is incapable of operating at subzero temperature. Addition of liquid plasticizer into the polymer electrolyte improves the Li-ion conductivity yet sacrifices the mechanical strength and interfacial stability with both electrodes. In this work, we showed that by introducing a spherical hyperbranched solid polymer plasticizer into a Li+ -conductive linear polymer matrix, an integrated dynamic cross-linked polymer network was built to maintain fully amorphous in a wide temperature range down to subzero. A quasi-solid polymer electrolyte with a solid mass content >90 % was prepared from the cross-linked polymer network, and demonstrated fast Li+ conduction at a low temperature, high mechanical strength, and stable interfacial chemistry. As a result, solid-state lithium-sulfur batteries employing the new electrolyte delivered high reversible capacity and long cycle life at 25 °C, 0 °C and -10 °C to serve energy storage at complex environmental conditions.

6.
Adv Mater ; 36(11): e2312125, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38052233

RESUMO

Twisted bilayer graphene (TBG) generates significant attention in the fundamental research of 2D materials due to its distinct twist-angle-dependent properties. Exploring the efficient production of TBG with a wide range of twist angles stands as one of the major frontiers in moiré materials. Here, the local space-confined chemical vapor deposition growth technique for high-quality single-crystal TBG with twist angles ranging from 0° to 30° on liquid copper substrates is reported. The clean surface, pristine interface, high crystallinity, and thermal stability of TBG are verified by using comprehensive characterization techniques including optical microscopy, electron microscopy, and secondary-ion mass spectrometry. The proportion of TBG in bilayer graphene reaches as high as 89%. In addition, the stacking structure and growth mechanism of TBG are investigated, revealing that the second graphene layer develops beneath the first one. A series of comparative experiments illustrates that the liquid copper surface, with its excellent fluidity, promotes the growth of TBG. Electrical measurements show the twist-angle-dependent electronic properties of as-grown TBG, achieving a room-temperature carrier mobility of 26640 cm2 V-1 s-1 . This work provides an approach for the in situ preparation of 2D twisted materials and facilitates the application of TBG in the fields of electronics.

7.
J Chromatogr A ; 1714: 464595, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38141483

RESUMO

Fabricating polymeric coatings that are responsive to multiple/dual stimuli is crucial and remains a major challenge in the development of highly efficient open tubular capillary electrochromatography (OT-CEC). In this study, a pH and temperature-responsive block copolymer, poly(styrene-maleic anhydride 2-dimethylamino ethyl methacrylate), P(St-MAn-DMAEMA), was designed and synthesized. Using P(St-MAn-DMAEMA) as the coating, an OT-CEC protocol was constructed for the analysis of chromones. The morphology and hydrophobicity-hydrophilicity of the polymeric coating could change via varying the environmental conditions, affecting the separation efficiency of OT-CEC. Interestingly, the best performance of OT-CEC was achieved at pH 9.7 and 45 °C via tuning the interactions between the coating and the analytes. Additionally, the proposed OT-CEC method exhibited a good linear range for the detection of the three test chromones from 10.0 to 100.0 µM, with all correlation coefficients (R2) >0.997. The coatings also had good stability and reusability. This work provides an approach for the preparation of new multiple-stimuli-responsive polymeric coatings for the establishment of OT-CEC systems.


Assuntos
Eletrocromatografia Capilar , Polímeros , Humanos , Polímeros/química , Eletrocromatografia Capilar/métodos , Metacrilatos
8.
Dalton Trans ; 53(1): 292-298, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38047479

RESUMO

Four trinucleotides 5'-ATA-3' (I), 5'-ATC-3' (II), 5'-CTA-3' (III) and 5'-CTC-3' (IV) were introduced to interact with a diazido-based photoactivatable anticancer prodrug trans,trans,trans-[PtIV(N3)2(OH)2(py)2] (py = pyridine; 1) upon light irradiation. Using electrospray ionization mass spectrometry (ESI-MS), we aimed to investigate the possibility of 1,3-intrastrand crosslinks at adenine and/or cytosine in the trinucleotides via the bi-functional trans-[PtII(py)2]2+ species generated by photodecomposition of complex 1. The primary mass spectrometry results showed that although mono- and di-platinated trinucleotides bound by mono-functional trans-[PtII(N3)(py)2]+ species were the major platinated adducts, comparable amounts of bifunctional trans-[PtII(py)2]2+-bound trinucleotides were also observed. Further tandem mass spectrometry of the trans-[PtII(py)2]2+-bound trinucleotides showed the formation of 1,3-crosslinks between adenine-adenine, adenine-cytosine and cytosine-cytosine bases in the trinucleotides. The formation of such unique structures is not only distinct from the action modes of cisplatin with DNA but also an important complement to the acknowledged 1,3-GNG intrastrand crosslink by trans-Pt species, which may support the promising and distinct anticancer activities of such photoactivatable diazido Pt(IV) anticancer prodrugs and deserve further studies.


Assuntos
Antineoplásicos , Pró-Fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Compostos Organoplatínicos/farmacologia , Compostos Organoplatínicos/química , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Adenina , Cisplatino
9.
Nat Commun ; 14(1): 7247, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945604

RESUMO

Micron-sized Si anode promises a much higher theoretical capacity than the traditional graphite anode and more attractive application prospect compared to its nanoscale counterpart. However, its severe volume expansion during lithiation requires solid electrolyte interphase (SEI) with reinforced mechanical stability. Here, we propose a solvent-induced selective dissolution strategy to in situ regulate the mechanical properties of SEI. By introducing a high-donor-number solvent, gamma-butyrolactone, into conventional electrolytes, low-modulus components of the SEI, such as Li alkyl carbonates, can be selectively dissolved upon cycling, leaving a robust SEI mainly consisting of lithium fluoride and polycarbonates. With this strategy, raw micron-sized Si anode retains 87.5% capacity after 100 cycles at 0.5 C (1500 mA g-1, 25°C), which can be improved to >300 cycles with carbon-coated micron-sized Si anode. Furthermore, the Si||LiNi0.8Co0.1Mn0.1O2 battery using the raw micron-sized Si anode with the selectively dissolved SEI retains 83.7% capacity after 150 cycles at 0.5 C (90 mA g-1). The selective dissolution effect for tailoring the SEI, as well as the corresponding cycling life of the Si anodes, is positively related to the donor number of the solvents, which highlights designing high-donor-number electrolytes as a guideline to tailor the SEI for stabilizing volume-changing alloying-type anodes in high-energy rechargeable batteries.

10.
J Am Chem Soc ; 145(47): 25643-25652, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37970704

RESUMO

Anode-free rechargeable sodium batteries represent one of the ultimate choices for the 'beyond-lithium' electrochemical storage technology with high energy. Operated based on the sole use of active Na ions from the cathode, the anode-free battery is usually reported with quite a limited cycle life due to unstable electrolyte chemistry that hinders efficient Na plating/stripping at the anode and high-voltage operation of the layered oxide cathode. A rational design of the electrolyte toward improving its compatibility with the electrodes is key to realize the battery. Here, we show that by refining the volume ratio of two conventional linear ether solvents, a binary electrolyte forms a cation solvation structure that facilitates flat, dendrite-free, planar growth of Na metal on the anode current collector and that is adaptive to high-voltage Na (de)intercalation of P2-/O3-type layered oxide cathodes and oxidative decomposition of the Na2C2O4 supplement. Inorganic fluorides, such as NaF, show a major influence on the electroplating pattern of Na metal and effective passivation of plated metal at the anode-electrolyte interface. Anode-free batteries based on the refined electrolyte have demonstrated high coulombic efficiency, long cycle life, and the ability to claim a cell-level specific energy of >300 Wh/kg.

11.
Arch Pharm (Weinheim) ; 356(12): e2300416, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37737557

RESUMO

In light of the cocrystal structure of ceritinib with anaplastic lymphoma kinase (ALK)WT protein, a series of novel 2,4-diarylaminopyrimidine analogs (L1-L25) bearing a typical piperidinyl-4-ol moiety were designed and synthesized with improved biological and physicochemical properties. Satisfyingly, most compounds demonstrated moderate to excellent antitumor effects with IC50 values below 5 µM on ALK-positive Karpas299 and H2228 cells. In particular, L6 bearing the 1-(6-methoxy-pyridin-2-yl)-4-(morpholinomethyl)piperidinyl-4-ol moiety was detected as the optimal compound against ALK-dependent cell lines of Karpas299 (0.017 µM) and H2228 cells (0.052 µM), in company with encouraging ALK enzyme inhibition (ALKWT , IC50 = 1.8 nM). In addition, L6 was also capable of inhibiting ALK-resistant mutations, including ALKL1196M (3.9 nM) and ALKG1202R (5.2 nM). Remarkably, L6 typically repressed colony formation and migration of H2228 cells in a dose-dependent manner. Meanwhile, acridine orange-ethidium bromide staining analysis indicated that the proapoptotic effect of L6 was better than that of ceritinib at the same concentration (50 nM). Ultimately, the binding patterns of L6 to ALKWT and ALKG1202R were ideally established, which further confirmed the structural basis in accordance with the structure-activity relationship analysis.


Assuntos
Antineoplásicos , Pirimidinas , Relação Estrutura-Atividade , Proliferação de Células , Pirimidinas/farmacologia , Pirimidinas/química , Sulfonas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Mutação , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química
12.
J Phys Chem Lett ; 14(38): 8620-8629, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37728520

RESUMO

Engineering the buried interfaces of perovskite solar cells (PSCs) is crucial for optimizing the device performance. We herein report a novel strategy by modifying the ETL-FTO interface with MgO, as well as the interface between the perovskite layer (PVKL) and the SnO2 electron transfer layer (ETL) with formamidine bromide (FABr). The dual-interface ETL engineering substantially improved the photoelectric conversion efficiency (19.62 → 22.04%) and suppressed the hysteresis index (14.98 → 1.09%). The structure-activity relationship was explored by using transient photoelectric and time-of-flight secondary-ion mass spectroscopic analyses. It was found that the FABr treatment enhanced the PVKL crystallinity and the PVKL-ETL interaction and that the MgO modification dramatically retarded the ion migration, which together optimized the ETL function. The mechanism underlying the influence of ion distribution on the dynamics of ions and free carriers is discussed, which may be helpful for the rational design of high-performance PSCs.

13.
Dalton Trans ; 52(35): 12478-12489, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37602756

RESUMO

Ruthenium(II) polypyridyl complexes have drawn growing attention due to their photophysical properties and anticancer activity. Herein we report four ruthenium(II) polypyridyl complexes [(N^N)2RuII(L)]2+ (1-4, L = 4-anilinoquinazoline derivatives, N^N = bidentate ligands with bis-nitrogen donors) as multi-functional anticancer agents. The epidermal growth factor receptor (EGFR) is overexpressed in a broad range of cancer cells and related to many kinds of malignance. EGFR inhibitors, such as gefitinib and erlotinib, have been approved as clinical anticancer drugs. The EGFR-inhibiting 4-anilinoquinazoline ligands greatly enhanced the in vitro anticancer activity of these ruthenium(II) polypyridyl complexes against a series of human cancer cell lines compared to [Ru(bpy)2(phen)], but interestingly, these complexes were actually not potent EGFR inhibitors. Further mechanism studies revealed that upon irradiation with visible light, complexes 3 and 4 generated a high level of singlet oxygen (1O2), and their in vitro anticancer activities against human non-small-cell lung (A549), cervical (HeLa) and squamous (A431) cancer cells were significantly improved. Specifically, complex 3 displayed potent phototoxicity upon irradiation with blue light, of which the photo-toxicity indexes (PIs) against HeLa and A431 cells were 11 and 8.3, respectively. These complexes exhibited strong fluorescence emission at ca. 600 nm upon excitation at about 450 nm. A subcellular distribution study by fluorescence microscopy imaging and secondary ion mass spectrometry imaging (ToF-SIMS) demonstrated that complex 3 mainly localized at the cytoplasm and complex 4 mainly localized in the nuclei of cells. Competitive binding with ctDNA showed that complex 4 was more favorable to bind to the DNA minor groove than complex 3. These differences support that complex 3 possibly exerts its anticancer activities majorly by photo-induced 1O2 generation and complex 4 by binding to DNA.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Rutênio , Humanos , Ligantes , Luz , Receptores ErbB
14.
Angew Chem Int Ed Engl ; 62(41): e202311865, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37615050

RESUMO

Passivating the interfaces between the perovskite and charge transport layers is crucial for enhancing the power conversion efficiency (PCE) and stability in perovskite solar cells (PSCs). Here we report a dual-interface engineering approach to improving the performance of FA0.85 MA0.15 Pb(I0.95 Br0.05 )3 -based PSCs by incorporating Ti3 C2 Clx Nano-MXene and o-TB-GDY nanographdiyne (NanoGDY) into the electron transport layer (ETL)/perovskite and perovskite/ hole transport layer (HTL) interfaces, respectively. The dual-interface passivation simultaneously suppresses non-radiative recombination and promotes carrier extraction by forming the Pb-Cl chemical bond and strong coordination of π-electron conjugation with undercoordinated Pb defects. The resulting perovskite film has an ultralong carrier lifetime exceeding 10 µs and an enlarged crystal size exceeding 2.5 µm. A maximum PCE of 24.86 % is realized, with an open-circuit voltage of 1.20 V. Unencapsulated cells retain 92 % of their initial efficiency after 1464 hours in ambient air and 80 % after 1002 hours of thermal stability test at 85 °C.

15.
Small ; 19(48): e2303035, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37605329

RESUMO

Engineered nanomaterials hold great promise to improve the specificity of disease treatment. Herein, a fully protein-based material is obtained from nonpathogenic Escherichia coli (E. coli), which is capable of morphological transformation from globular to fibrous in situ for inducing tumor cell apoptosis. The protein-based material P1 is comprised of a ß-sheet-forming peptide KLVFF, pro-apoptotic protein BAK, and GFP along with targeting moieties. The self-assembled nanoparticles of P1 transform into nanofibers in situ in the presence of cathepsin B, and the generated nanofibrils favor the dimerization of functional BH3 domain of BAK on the mitochondrial outer membrane, leading to efficient anticancer activity both in vitro and in vivo via mitochondria-dependent apoptosis through Bcl-2 pathway. To precisely manipulate the morphological transformation of biosynthetic molecules in living cells, a spatiotemporally controllable anticancer system is constructed by coating P1-expressing E. coli with cationic conjugated polyelectrolytes to release the peptides in situ under light irradiation. The biosynthetic peptide-based enzyme-catalytic transformation strategy in vivo would offer a novel perspective for targeted delivery and shows great potential in precision disease therapeutics.


Assuntos
Escherichia coli , Proteínas Proto-Oncogênicas c-bcl-2 , Escherichia coli/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Apoptose , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo
16.
Dalton Trans ; 52(34): 12057-12066, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37581306

RESUMO

The interaction of a photoactivatable diazidodihydroxido Pt(IV) prodrug, trans,trans,trans-[Pt(N3)2(OH)2(py)2] (py = pyridine; 1), with a hexamer straight human telomeric DNA unit sequence (5'-T1T2A3G4G5G6-3', I) upon light irradiation was investigated by electrospray ionization mass spectroscopy (ESI-MS). In the primary mass spectrum, two major mono-platinated I adducts with the bound Pt moieties, trans-[PtII(N3)(py)2]+ (1') and trans-[PtII(py)2]2+ (1''), respectively, were detected. It is rare to observe such high abundance and nearly equal intensity platinated DNA adducts formed by these two PtII species because 1' is usually the only major reduced Pt(II) species produced by the photodecomposition of complex 1 in the presence of DNA while 1'' was rarely detected as the major reduced PtII species reported previously. Subsequent tandem mass spectrometric analysis by collision-induced dissociation (CID) showed that in the former adduct {I + 1'}2+, G6 and A3 were the platination sites. While in the latter adduct {I + 1''}2+, a potential intrastrand crosslink was speculated after G4 and G6 sites were identified. Additionally, other minor platinated adducts like di-platinated I adduct by 1' with platination sites at G4 and G6 and mono-platinated I adducts containing base oxidation were also detected by mass spectrometry. Due to the rich guanines and their sensitivity to oxidation, the oxidation induced by 1 most probably occurred at guanine. The oxidation adducts were proposed as 8-hydroxyl guanine, spiroiminodihydantoin (Sp), 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG), 5-guanidinohydantoin (Gh), and/or dehydroguanidinohydantoin (DGh) referring to previous reports. The obtained results provide useful chemical information about the photoreaction between photoactivatable Pt(IV) anticancer prodrugs and human telomeric DNA. Such special damages of Pt(IV) prodrugs on human telomeric DNA implicate its active role in the mechanism of Pt(IV) prodrugs and further support the unique sequence-dependent photointeraction profile of complex 1 reacting with DNA.


Assuntos
Antineoplásicos , Pró-Fármacos , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Pró-Fármacos/química , Compostos Organoplatínicos/farmacologia , Compostos Organoplatínicos/química , DNA/química , Adutos de DNA , Guanina/química
17.
Sci Adv ; 9(27): eadf8412, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37418527

RESUMO

State-of-the-art ion-selective membranes with ultrahigh precision are of significance for water desalination and energy conservation, but their development is limited by the lack of understanding of the mechanisms of ion transport at the subnanometer scale. Herein, we investigate transport of three typical anions (F-, Cl-, and Br-) under confinement using in situ liquid time-of-flight secondary ion mass spectrometry in combination with transition-state theory. The operando analysis reveals that dehydration and related ion-pore interactions govern anion-selective transport. For strongly hydrated ions [(H2O)nF- and (H2O)nCl-], dehydration enhances ion effective charge and thus the electrostatic interactions with membrane, observed as an increase in decomposed energy from electrostatics, leading to more hindered transport. Contrarily, weakly hydrated ions [(H2O)nBr-] have greater permeability as they allow an intact hydration structure during transport due to their smaller size and the most right-skewed hydration distribution. Our work demonstrates that precisely regulating ion dehydration to maximize the difference in ion-pore interactions could enable the development of ideal ion-selective membranes.


Assuntos
Desidratação , Água , Humanos , Transporte de Íons , Íons , Ânions/química , Água/química
18.
Nat Commun ; 14(1): 3199, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268632

RESUMO

Bilayer graphene (BLG) is intriguing for its unique properties and potential applications in electronics, photonics, and mechanics. However, the chemical vapor deposition synthesis of large-area high-quality bilayer graphene on Cu is suffering from a low growth rate and limited bilayer coverage. Herein, we demonstrate the fast synthesis of meter-sized bilayer graphene film on commercial polycrystalline Cu foils by introducing trace CO2 during high-temperature growth. Continuous bilayer graphene with a high ratio of AB-stacking structure can be obtained within 20 min, which exhibits enhanced mechanical strength, uniform transmittance, and low sheet resistance in large area. Moreover, 96 and 100% AB-stacking structures were achieved in bilayer graphene grown on single-crystal Cu(111) foil and ultraflat single-crystal Cu(111)/sapphire substrates, respectively. The AB-stacking bilayer graphene exhibits tunable bandgap and performs well in photodetection. This work provides important insights into the growth mechanism and the mass production of large-area high-quality BLG on Cu.

19.
Chem Commun (Camb) ; 59(54): 8412-8415, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37326456

RESUMO

Using liquid secondary ion mass spectrometry, we in situ unraveled that the single walled carbon nanotubes-modified gold electrode surface is free of a dense adsorption phase and abundant in water molecules, which facilitated the electro-oxidation reaction of ascorbate. Such an understanding will expedite the knowledge-based development of electrochemical interfaces.

20.
ACS Nano ; 17(13): 12629-12640, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37350330

RESUMO

Dehydration is a basic phenomenon in ion transport through confined nanochannels, but how it affects ion trans-membrane selectivity has not been understood due to a lack of characterization techniques and suitable pore structures. Herein, hydration number distributions of typical alkali metal ions were characterized by combining uniform subnanochannels of ZIF-8-based membranes with the in situ liquid time-of-flight secondary ion mass spectrometry (ToF-SIMS) technique, revealing that steric hindrance induced ion dehydration through neutral confined ZIF-8 windows. The reduction in size due to partial dehydration increased the intrapore velocity for monovalent cations. The highest entropy value with maximum size changes resulting from dehydration drove fast and efficient selective transport of Li+ over other alkaline metal ions, leading to a Li+/Rb+ selectivity of 5.2. The dehydration at the entrance of membrane pores was shown to account for the majority of overall barriers, being a dominant element for ion transport. High hydration energy (>1500 kJ/mol) hindered the dehydration and transport of typical alkaline earth metal ions, achieving ultrahigh monovalent/bivalent cation selectivity (∼104). These findings uncover the crucial role of dehydration energy barriers and size-based entropy barriers in ion selectivity of trans-subnanochannel transport, providing guidelines for designing selective membranes with specific pore sizes to promote the dehydration of desired solutes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA