Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 951: 175437, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39134268

RESUMO

Natural disaster can disrupt soil structure and replace established vegetation with younger plants, altering the local hydrological processes. We used hydrogen and oxygen stable isotopes to examine soil water dynamics and plant water uptake patterns in two adjacent fir stands in the eastern Qinghai-Tibet Plateau: a primeval mature stand (MF, finer- textured soil) and a debris flow-developed half-mature stand (HMF, coarser-textured soil). Our results showed that the isotopic composition and soil gravimetric water content (SWC) in deep soil water in MF exhibited a more pronounced hysteresis pattern in response to precipitation compared to HMF, indicating lower turnover rate of soil water in MF. This was also confirmed by a smaller contribution of preferential flow to deep soil water in MF compared to HMF. The higher water storage (higher SWC values) and lower turnover rate of soil water suggest a higher soil water buffer capacity in MF. Additionally, both stands showed no significant difference in plant water sources, but plants in MF used more winter precipitation due to the lower soil water turnover rate. These differences suggest MF may be more vulnerable to water disasters, while HMF may be more susceptible to seasonal droughts under climate change. Our insights enhance understanding of hydrological processes linked to changing surface conditions and offer valuable information for managing forest water resources in mountainous regions.

2.
Sci Total Environ ; 943: 173638, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38825202

RESUMO

In the context of climate change, extreme precipitation events are continuously increasing and impact the water­carbon coupling of ecosystems. The vertical vegetation zonation, as a characteristic of mountain ecosystems, reflects the differences in vegetation response to climate change at different elevations. In this study, we used the water use efficiency (WUE) as an indicator to evaluate the water­carbon relationship. By using MODIS data, we analyzed the spatiotemporal patterns of gross primary productivity (GPP), evapotranspiration (ET), and WUE from 2001 to 2020, as well as the responses of WUE to extreme wetness factor Number of precipitation days (R0.1), extreme dryness factor Consecutive dry days (CDD), and meteorological factors under the vertical vegetation zonation. Our results showed that annual GPP and ET displayed a significant increasing trend between 2001 and 2020, whereas WUE showed a weak decreasing trend. Spatially, GPP and WUE decreased with increasing elevation. Analyzing the WUE of mountainous ecosystems as a unified whole may not precisely capture the reactions of vegetation to severe rainfall occurrences. In fact, across different vegetation belts in mountainous areas, there exists a negative correlation between WUE and R0.1, and a positive correlation with CDD. In terms of meteorological factors, the temporal variation of GPP was primarily associated with vapor pressure deficit (VPD) and temperature (Ta), while those of ET was mainly related to soil water content (SWC). WUE was affected by a combination of meteorological factors and had a certain degree of variation between different altitude intervals. These findings contribute to a better understanding and prediction of the relationship between extreme rainfall climate and water­carbon coupling in mountainous areas.

3.
Sci Total Environ ; 928: 172446, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38621528

RESUMO

The freeze-thaw cycle mediates permafrost soil hydrothermal status, nitrogen (N) mineralization, and loss. Furthermore, it affects root development and competition among nitrophilic and other species, shaping the pattern of N distribution in alpine ecosystems. However, the specific N dynamics during the growing season and N loss during the non-growing season in response to climate warming under low- and high-moisture conditions are not well documented. Therefore, we added 15N tracers to trace the fate of N in warmed and ambient alpine meadows and alpine swamp meadows in the permafrost region of the Qinghai-Tibet Plateau. During the growing season, warming increased 15N recovery (15Nrec) in shoots of K. humilis, litters, 0-5 and 5-20 cm roots in the alpine meadow by 149.94 % ± 52.87 %, 114.58 % ± 24.43 %, 61.11 % ± 32.27 %, and 97.12 % ± 42.92 %, respectively, while increased 15Nrec of litters by 151.55 % ± 27.06 % in the alpine swamp meadow. During the non-growing season, warming reduced 15N stored in roots by 486.77 % ± 57.90 %, though increased the 15N recovery in 5-20 cm soil depth by 76.68 % ± 39.42 % in the alpine meadow, whereas it did not affect N loss during the non-growing season in the alpine swamp meadow. Overall, warming promoted N utilization by increasing the plant N pool during the growing season, and enhanced root N loss and downward migration during the non-growing season due to the freeze-thaw process, which may result in fine root turnover and cell destruction releasing N in the alpine meadow. Conversely, the N dynamics of alpine swamp meadows were less responsive to climate warming.

4.
Sci Total Environ ; 927: 172269, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583607

RESUMO

Despite the extensive research conducted on plant-soil-water interactions, the understanding of the role of plant water sources in different plant successional stages remains limited. In this study, we employed a combination of water isotopes (δ2H and δ18O) and leaf δ13C to investigate water use patterns and leaf water use efficiency (WUE) during the growing season (May to September 2021) in Hailuogou glacier forefronts in China. Our findings revealed that surface soil water and soil nutrient gradually increased during primary succession. Dominant plant species exhibited a preference for upper soil water uptake during the peak leaf out period (June to August), while they relied more on lower soil water sources during the post-leaf out period (May) or senescence (September to October). Furthermore, plants in late successional stages showed higher rates of water uptake from uppermost soil layers. Notably, there was a significant positive correlation between the percentage of water uptake by plants and available soil water content in middle and late stages. Additionally, our results indicated a gradual decrease in WUE with progression through succession, with shallow soil moisture utilization negatively impacting overall WUE across all succession stages. Path analysis further highlighted that surface soil moisture (0- 20 cm) and middle layer nutrient availability (20- 50 cm) played crucial roles in determining WUE. Overall, this research emphasizes the critical influence of water source selection on plant succession dynamics while elucidating underlying mechanisms linking succession with plant water consumption.


Assuntos
Ecossistema , Camada de Gelo , Solo , Água , China , Solo/química , Plantas , Folhas de Planta , Monitoramento Ambiental
5.
Sci Total Environ ; 926: 171816, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38513851

RESUMO

The evapotranspiration (ET) plays a crucial role in shaping regional climate patterns and serves as a vital indicator of ecosystem function. However, there remains a limited understanding of the seasonal variability of future ET over China and its correlation with environmental drivers. This study evaluated the skills of 27 models from the Six Phase of Coupled Model Intercomparison Project in modeling ET and the Bayesian Model Averaging (BMA) method was employed to merge monthly simulated ET based on the top five best-performing models. The seasonal changes in ET under three climate scenarios from 2030 to 2099 were analyzed based on the BMA-merged ET, which was well validated with observed ET collected from fourteen flux sites across China. Significant increasing ET over China are projected under all seasons during 2030-2099, with 0.05-0.13 mm yr-1, 0.11-0.23 mm yr-1, and 0.20-0.41 mm yr-1 under SSP1-2.6, SSP2-4.5 and SSP5-8.5 scenarios, respectively. Relative to the historical period (1980-2014), the relative increase in ET over China is highest in winter and lowest in summer. Seasonal ET increases significantly in all seven climate sub-regions under high forcing scenario. Higher ET increase is generally found in southeastern humid regions, while lowest ET increase occurs in northwest China. At the country level, the primary factor driving ET increase during spring, summer, and autumn seasons is the increasing net radiation and warming. In contrast, ET increase during winter is influenced not only by energy factors but also by vegetation-related factors. Future seasonal ET increase is predominantly driven by increasing energy factors in the southeastern humid region and Tibetan Plateau, while seasonal ET changes in the northwest region prevailingly depend on soil moisture. Results indicate that China will experience a "wet season will get wetter, and dry season will become drier" in the 21st century with high radiation forcing scenario.

6.
Nat Commun ; 15(1): 722, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267436

RESUMO

Recent climate change has caused an increase in warming-driven erosion and sediment transport processes on the Tibetan Plateau (TP). Yet a lack of measurements hinders our understanding of basin-scale sediment dynamics and associated spatiotemporal changes. Here, using satellite-based estimates of suspended sediment, we reconstruct the quantitative history and patterns of erosion and sediment transport in major headwater basins from 1986 to 2021. Out of 13 warming-affected headwater regions, 63% of the rivers have experienced significant increases in sediment flux. Despite such intensified erosion, we find that 30% of the total suspended sediment flux has been temporarily deposited within rivers. Our findings reveal a pronounced spatiotemporal heterogeneity within and across basins. The recurrent fluctuations in erosion-deposition patterns within river channels not only result in the underestimation of erosion magnitude but also drive continuous transformations in valley morphology, thereby endangering local ecosystems, landscape stability, and infrastructure project safety.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA