Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Nanotechnology ; 35(33)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38759633

RESUMO

The significant volume change experienced by silicon (Si) anodes during lithiation/delithiation cycles often triggers mechanical-electrochemical failures, undermining their utility in high-energy-density lithium-ion batteries (LIBs). Herein, we propose a sub micro-nano-structured Si based material to address the persistent challenge of mechanic-electrochemical coupling issue during cycling. The mesoporous Si-based composite submicrospheres (M-Si/SiO2/CS) with a high Si/SiO2content of 84.6 wt.% is prepared by magnesiothermic reduction of mesoporous SiO2submicrospheres followed by carbon coating process. M-Si/SiO2/CS anode can maintain a high specific capacity of 740 mAh g-1at 0.5 A g-1after 100 cycles with a lower electrode thickness swelling rate of 63%, and exhibits a good long-term cycling stability of 570 mAh g-1at 1 A g-1after 250 cycles. This remarkable Li-storage performance can be attributed to the synergistic effects of the hierarchical structure and SiO2frameworks. The spherical structure mitigates stress/strain caused by the lithiation/delithiation, while the internal mesopores provide buffer space for Si expansion and obviously shorten the diffusion path for electrolyte/ions. Additionally, the amorphous SiO2matrix not only servers as support for structure stability, but also facilitates the rapid formation of a stable solid electrolyte interphase layer. This unique architecture offers a potential model for designing high-performance Si-based anode for LIBs.

2.
Small ; : e2312167, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634275

RESUMO

3D composite electrodes have shown extraordinary promise as high mass loading electrode materials for sodium ion batteries (SIBs). However, they usually show poor rate performance due to the sluggish Na+ kinetics at the heterointerfaces of the composites. Here, a 3D MXene-reduced holey graphene oxide (MXene-RHGO) composite electrode with Ti─O─C bonding at 2D heterointerfaces of MXene and RHGO is developed. Density functional theory (DFT) calculations reveal the built-in electric fields (BIEFs) are enhanced by the formation of bridged interfacial Ti─O─C bonding, that lead to not only faster diffusion of Na+ at the heterointerfaces but also faster adsorption and migration of Na+ on the MXene surfaces. As a result, the 3D composite electrodes show impressive properties for fast Na+ storage. Under high current density of 10 mA cm-2, the 3D MXene-RHGO composite electrodes with high mass loading of 10 mg cm-2 achieve a strikingly high and stable areal capacity of 3 mAh cm-2, which is same as commercial LIBs and greatly exceeds that of most reported SIBs electrode materials. The work shows that rationally designed bonding at the heterointerfaces represents an effective strategy for promoting high mass loading 3D composites electrode materials forward toward practical SIBs applications.

3.
J Colloid Interface Sci ; 665: 711-719, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38552586

RESUMO

Zn anodes suffer from the formation of uncontrolled dendrites aggravated by the uneven electric field and the insulating by-product accumulation in aqueous zinc-ion batteries (AZIBs). Here, an effective strategy implemented by 1-butyl-3-methylimidazolium hydrogen sulfate (BMIHSO4) additive is proposed to synergistically tune the crystallographic orientation of zinc deposition and suppress the formation of zinc hydroxide sulfate for enhancing the reversibility on Zn anode surface. As a competing cation, BMI+ is proved to preferably adsorb on Zn-electrode compared with H2O molecules, which shields the "tip effect" and inhibits the Zn-deposition agglomerations to inducing the horizontal growth along Zn (002) crystallographic texture. Simultaneously, the protonated BMIHSO4 additives could remove the detrimental OH- in real-time to fundamentally eliminate the accumulation of 6Zn(OH)2·ZnSO4·4H2O and Zn4SO4(OH)6·H2O on Zn anode surface. Consequently, Zn anode exhibits an ultra-long cycling stability of one year (8762 h) at 0.2 mA cm-2/0.2 mAh cm-2, 3600 h at 2 mA cm-2/2 mAh cm-2 with a high plating cumulative capacity of 3.6 Ah cm-2, and a high average Coulombic efficiency of 99.6 % throughout 1000 cycles. This work of regulating Zn deposition texture combined with eliminating notorious by-products could offer a desirable way for stabilizing the Zn-anode/electrolyte interface in AZIBs.

4.
Mater Horiz ; 11(4): 903-922, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38084018

RESUMO

An alloying-type metal foil serves as an integrated anode that is distinct from the prevalent powder-casting production of lithium ion batteries (LIBs) and emerging lithium metal batteries (LMBs), and also its energy density and processing technology can be profoundly developed. However, besides their apparent intriguing advantages of a high specific capacity, electrical conductivity, and the ease of formation, metal foil anodes suffer from slow lithiation kinetics, a trade-off between specific capacity and cycle life, and a low initial Coulombic efficiency (ICE) owing to their multi-scaled structural geometry, huge volume change, and induced interfacial issues during the alloying process. In this review, we attempt to present a comprehensive overview on the recent research progress with respect to alloying-type metal foil anodes toward high-energy-density and low-cost LIBs. The failure mechanism of metal foil anodes during lithiation/delithiation and existing challenges are also summarized. Subsequently, the structural design and interface engineering strategies that have witnessed significant achievements are highlighted, which can promote the practical development of LIBs, including artificial SEI, alloying, structural design, and grain refinement. Furthermore, scientific perspectives are proposed to further improve the overall performance and decouple the complex mechanisms in terms of interdisciplinary fields of electrochemistry, metallic materials science, mechanics, and interfacial science, demonstrating that metal foil anode-based LIBs require more research efforts.

5.
J Colloid Interface Sci ; 651: 534-543, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37562296

RESUMO

Potassium-based energy storage has emerged as a promising alternative for advanced energy storage systems, driven by the abundance of potassium, fast ion migration, and low standard electrode potential. Hybrid capacitors, which combine the desirable characteristics of batteries and supercapacitors, offer a compelling solution for efficient energy storage. In this study, we present the development of versatile composite materials, specifically potassium vanadium fluorophosphate (KVPO4F) composites, utilizing a sol-gel method. These composites enable tunable potassium storage and charge transport kinetics within regulated voltage windows, serving as both cathode and anode materials. The anode composite, composed of KVPO4F and hierarchical porous carbon (HPC), exhibited exceptional stability over 400 cycles within a low-voltage window. On the other hand, the cathode composite, consisting of battery-like KVPO4F and physisorption activated carbon (AC), demonstrated great potential as a cathode material, striking a balance between specific energy and cycle life within a regulated high-voltage window. By integrating KVPO4F/C as the anode and KVPO4F/AC as the cathode, we successfully created potassium-ion hybrid capacitors (PIHCs) that showcased an impressive capacity retention of 83% after 10,000 cycles within a high voltage window of 0.5-4.3 V. Furthermore, to explore the application of these materials in miniaturized energy storage, we fabricated potassium-ion micro hybrid capacitors (PIMHCs) with interdigitated electrodes. These devices exhibited a high areal energy density of 18.8 µWh cm-2 at a power density of 111.6 µW cm-2, indicating their potential for compact energy storage systems. The results of this study demonstrate the versatility and efficacy of the developed KVPO4F composite materials, highlighting their potential for future advancements in potassium-based energy storage technologies.

6.
Mater Horiz ; 10(9): 3536-3547, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37272086

RESUMO

Two-dimensional (2D) nanosheets have been assembled into various macroscopic structures for wide engineering applications. To fully explore their exceptional thermal, mechanical, and electrical properties, 2D nanosheets must be aligned into highly ordered structures due to their strong structural anisotropy. Structures stacked layer by layer such as films and fibers have been readily assembled from 2D nanosheets due to their planar geometry. However, scalable manufacturing of macroscopic structures with vertically aligned 2D nanosheets remains challenging, given their large lateral size with a thickness of only a few nanometers. Herein, we report a scalable and efficient microfluidics-enabled sheet-aligning process to assemble 2D nanosheets into a large-area film with a highly ordered vertical alignment. By applying microchannels with a high aspect ratio, 2D nanosheets were well aligned vertically under strong channel size confinement and high flow shear stress. A vertically aligned graphene sheet film was obtained and applied to effectively improve the heat transfer of thermal interfacial materials (TIMs). Superior through-plane thermal conductivity of 82.7 W m-1 K-1 at a low graphene content of 11.8 vol% was measured for vertically aligned TIMs. Thus, they demonstrate exceptional thermal management performance for switching power supplies with high reliability.

7.
ACS Appl Mater Interfaces ; 15(23): 28536-28545, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37264810

RESUMO

Thermally conductive and electrically insulating thermal interface materials (TIMs) are highly desired for electronic cooling. To improve heat transfer efficiency, thermally conductive fillers with a high loading content have been incorporated into the polymer-based TIMs. However, this is usually at the expense of the interfacial thermal resistance reduction and reliability. In this study, vertically aligned boron nitride nanosheet films (VBNFs) have been prepared by a scalable microfluidic spinning process and template-assisted chemical vapor deposition conversion method. A further high-temperature annealing was applied to achieve high crystallinity. VBNFs have been applied as fillers to fabricate TIMs and achieve a superior through-plane thermal conductivity of 6.4 W m-1 K-1 and low modulus of 2.2 MPa at low BN loading of 9.85 vol %, benefitting from the well-aligned vertical sheet structure and high crystallinity. In addition, the fabricated TIMs present high-volume resistivity and breakdown strength, satisfying the electrical insulation demands. The high thermal conductivity and low modulus contribute an outstanding cooling performance to the TIMs in the heat dissipation application for high-power LEDs. This template-assisted conversion technology for the fabrication of orientated BN nanosheets structure and the prepared high-performance TIMs pave the way for efficient thermal management of high-power electronics.

8.
Small ; 19(29): e2301915, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37189236

RESUMO

Pressure-stabilized high-entropy sulfide (FeCoNiCuRu)S2 (HES) is proposed as an anode material for fast and long-term stable lithium/sodium storage performance (over 85% retention after 15 000 cycles @10 A g-1 ). Its superior electrochemical performance is strongly related to the increased electrical conductivity and slow diffusion characteristics of entropy-stabilized HES. The reversible conversion reaction mechanism, investigated by ex-situ XRD, XPS, TEM, and NMR, further confirms the stability of the host matrix of HES after the completion of the whole conversion process. A practical demonstration of assembled lithium/sodium capacitors also confirms the high energy/power density and long-term stability (retention of 92% over 15 000 cycles @5 A g-1 ) of this material. The findings point to a feasible high-pressure route to realize new high-entropy materials for optimized energy storage performance.

9.
J Colloid Interface Sci ; 643: 420-427, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37086531

RESUMO

High capacity, long cycle life, and fast kinetics are highly desired for alloying anodes in sodium ion capacitors (SICs). However, the huge repeatedly volume changes during the alloying/dealloying process cause electrode pulverization, seriously degrading the capacity and cycling stability. To address this issue, we developed a microwave irradiation technology for the in-situ growth of nano-sized Bi uniformly anchored on the surface of carbon nanotubes (CNTs). The as-synthesized freestanding electrode film effectively retards the pulverization of Bi nanoparticles, enabling fast sodium storage kinetics for high-power performance (278.1 mAh g-1 @ 30 A g-1), as well as high-capacity retention of 94% for over 3,500 cycles. The coin-cell type SICs of a Bi/CNTs anode paired with an activated carbon (AC)/CNTs cathode can deliver a maximum energy density of 128.5 Wh kg-1 and a high power density of 12.3 kW kg-1 with a remaining energy density of 85 Wh kg-1. Additionally, the flexible quasi-solid SICs using a gel electrolyte demonstrated a high volumetric energy density of 21 mWh cm-3 with good cycling stability (90%) for over 1500 cycles. These results show great promise for our developed SICs as the next-generation energy storage to bridge the performance gap between batteries and supercapacitors, as well as for flexible energy storage applications.

10.
J Colloid Interface Sci ; 638: 161-172, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36736117

RESUMO

TiO2 is considered as a low cost, long-term stable, and safe anode for high power K-ion hybrid capacitors (KICs) due to its abundant reserve, small volume expansion rate, and sloping voltage plateau that avoids K-ion plating at high voltage polarization. However, the enhancement of its low capacity and sluggish kinetics caused by poor electroconductivity and high insertion barrier is still challenging to further develop high-performance KICs. Herein, the reduced graphene oxide (rGO) is embedded in the walls of 3D ordered macro-/mesoporous TiO2 (termed as TiO2@rGO framework) to create intimate TiO2/rGO interfaces, ensuring the effectively electron transportation during potassiation/depotassiation of TiO2 while maintaining rapid ions/electrolyte diffusion. Furthermore, the controlled amorphous TiO2 framework can further lower the lattice insertion energies, contributing to a fast accommodation of K-ion. As expected, the amorphous TiO2@rGO framework (TiO2@rGO-1) exhibits a superior rate capability (148.8 mAh g-1 at 5 A g-1) and cycling stability (171.2 mAh g-1 at 1 A g-1 after 800 cycles). The assembled KICs can reach a high energy/power density of 125.2 Wh kg-1/4267.4 W kg-1 as well as a long-term lifespan. This tactic provides a reliable and general way to design a TiO2-based anode with fast kinetics toward high-performance KICs.


Assuntos
Potássio , Cinética , Porosidade , Íons , Eletrodos
11.
ACS Appl Mater Interfaces ; 14(34): 39031-39038, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35993541

RESUMO

Low-power electronics are urgently needed for various emerging technologies, e.g., actuators as signal transducers and executors. Collecting energy from ubiquitous low-grade heat sources (T < 100 °C) as an uninterrupted power supply for low-power electronics is highly desirable. However, the majority of energy-harvesting systems are not capable of collecting low-grade heat energy in an efficient and constant manner. Limited by materials and driving mode, fabrications of low-power and energy-efficient actuators are still challenging. Here, highly thermally conductive bimorph structures based on graphene/poly(dimethylsiloxane) (PDMS) structures have been fabricated as low-grade heat energy harvesters and energy-efficient actuators. Regular temperature fluctuations on bimorph structures can be controlled by nonequilibrium heat transfer, leading to stable and self-sustained thermomechanical cycles. By coupling ferroelectric poly(vinylidene fluoride) with bimorph structures, uninterrupted thermomechanoelectrical energy conversion has been achieved from the low-grade heat source. Utilizing the rapid thermal transport capability, multifinger soft grippers are assembled with bimorph actuators, demonstrating fast response, large displacement, and adaptive grip when driven by low-temperature heaters.

12.
ACS Appl Mater Interfaces ; 14(1): 1478-1488, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34928125

RESUMO

Transparent flexible supercapacitors (TFSCs) are a tantalizing power supplier for future transparent flexible electronics. However, their energy density is far behind a practical level while maintaining high transparency. We report here a transparent flexible potassium-ion microcapacitor, and its high energy density (15.5 µWh cm-2) roots in the battery-supercapacitor hybrid storage mechanism and much enlarged working voltage (3 V), outperforming the state-of-the-art TFSC, which is generally based on an aqueous electrolyte and an asymmetric pseudocapacitive mechanism. From an electrode material perspective, a multidimensional topotactic host composite anode is designed in which the component not only performs energy storage by synchronous and reversible uptake of potassium ions and electrons into its host structure, but also mutually compensates individual weakness in functional and structural aspects, efficiently constructing a three-dimensional potassium-ion diffusion and electron transport system. This conceptual exhibition provides design principles at material and device levels for high-performance TFSCs.

13.
ACS Appl Mater Interfaces ; 13(45): 54096-54105, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34749501

RESUMO

Aqueous zinc-ion batteries (ZIBs) are regarded as a promising candidate for ultrafast charge storage owing to the high ionic conductivity of aqueous electrolytes and high theoretical capacity of zinc metal anodes. However, the strong electrostatic interaction between high-charge-density zinc ions and host materials generally leads to sluggish ion-transport kinetics and structural collapse of rigid cathode materials during the charge/discharge process, so searching for suitable cathode materials for ultrafast and long-term stable ZIBs remains a great challenge. Herein, flexible electron-rich ion channels enabling fast-charging and stable aqueous ZIBs have been demonstrated. Because of the nitrogen-rich conjugated structure of organic phenazine (PNZ) molecules, electron-rich ion channels are formed with the C═N redox centers situated on the channel surface, where zinc ions can transport rapidly and react with active moieties directly. Meanwhile, the π-conjugated systems and inherent flexibility of PNZ molecules can accommodate rapid strain changes and maintain their structural stability during zinc-ion intercalation/deintercalation. Consequently, they exhibit a high capacity of 94.2 mAh g-1 at an ultrahigh rate of 700C (208.6 A g-1) and an ultralong life over 100,000 cycles at 100C, which are superior to those of previously reported aqueous ZIBs. Our work presents a new way for developing ultrafast and ultrastable aqueous ZIBs.

14.
J Colloid Interface Sci ; 596: 130-138, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33839347

RESUMO

Lithium-ion hybrid capacitors (LICs) have gained increasing focus owing to their high energy/power densities. The development of anodes with superior rate capability is an effective way to surmount the kinetic mismatch between anodes and cathodes, and thus, enhancing the energy/power densities. Herein, Co3O4 nanoparticles embedded in three-dimensionally (3D) ordered macro-/mesoporous TiO2 (Co3O4@TiO2) are synthesized through an in situ method from dual templates. Differing from the composite prepared by loading active nanoparticles on support, Co3O4 nanoparticles are embedded in TiO2 framework, which can improve the stability of the electrode. Furthermore, the hierarchically porous structure of TiO2 is in favor of the rapid diffusion of ions and electrolyte. As a result, The Co3O4@TiO2-2 composite with an optimized Co3O4 content (~25 wt%) delivers a high capacity of 944.1 mAh g-1 after 100 cycles at 0.1 A g-1 and high-rate capability (405.7 mAh g-1 after 1000 cycles at 5 A g-1). The LIC assembled with Co3O4@TiO2-2 anode and activated carbon (AC) cathode delivers high energy/power densities (maximum, 87.9 Wh kg-1/10208.9 W kg-1) and great cycle stability (88.1%, 6000 cycles, 0.5 A g-1).

15.
Small ; 16(48): e2004457, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33155379

RESUMO

Nano heterostructures relying on their versatile construction and the breadth of combined functionality have shown great potential in energy storage fields. Herein, 2D sandwiched MoSe2 /TiO2- x /graphene nano heterostructures are designed by integrating structural and functional effects of each component, aiming to address the rate capability and cyclic stability of MoSe2 for sodium ion capacitors (SICs). These 2D nano heterostructures based on graphene platform can facilitate the interfacial electron transport, giving rise to fast reaction kinetics. Meanwhile, the 2D open structure induces a large extent of surface capacitive contribution, eventually leading to a high rate capability (415.2 mAh g-1 @ 5 A g-1 ). An ultrathin oxygen deficient TiO2- x layer sandwiched in these nano heterostructures provides a strong chemical-anchoring regarding the products generated during the sodiation/desodiation process, securing the entire cyclic stability. The associated sodiation/desodiation mechanism is revealed by operando and ex situ characterizations, which exhibits a strong solid electrolyte interphase (SEI) dependence. The simulations verify the dependent sodiation products and enhanced heterostructural chemical-anchoring. Assembled SICs based on these nano heterostructures anode exhibit high initial Coulombic efficiency, energy/power densities, and long cycle life, shedding new light on the design of nano heterostructure electrodes for high performance energy storage application.

16.
ACS Appl Mater Interfaces ; 12(26): 29218-29227, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32490658

RESUMO

Performance degradation of lithium/sodium-ion capacitors (LICs/SICs) mainly originates from anode pulverization, particularly the alloying and conversion types, and has spurred research for alternatives with an insertion mechanism. Three-dimensional (3D) topotactic host materials remain much unexplored compared to two-dimensional (2D) ones (graphite, etc.). Herein, vanadium monophosphide (VP) is designed as a 3D topotactic host anode. Ex situ electrochemical characterizations reveal that there are no phase changes during (de)intercalation, which follows the topotactic intercalation mechanism. Computational simulations also confirm the metallic feature and topotactic structure of VP with a spacious interstitial position for the accommodation of guest species. To boost the electrochemical performance, carbon nano-onions (CNOs) are coupled with 3D VP. Superior specific capacity and rate capability of VP-CNOs vs lithium/sodium can be delivered due to the fast ion diffusion nature. An exceptional capacity retention of above 86% is maintained after 20 000 cycles, benefitting from the topotactic intercalation process. The optimized LICs/SICs exhibit high energy/power densities and an ultrastable lifespan of 20 000 cycles, which outperform most of the state-of-the-art LICs and SICs, demonstrating the potential of VP-CNOs as insertion anodes. This exploration would draw attention with regard to insertion anodes with 3D topotactic host topology and provide new insights into anode selection for LICs/SICs.

17.
J Colloid Interface Sci ; 554: 650-657, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31351335

RESUMO

Transparent and flexible supercapacitors (TFSCs) could diversify the future wearable electronics owing to the fascinating optoelectronic and electrochemical performances. Herein, we report symmetric TFSCs assembled by reduced graphene oxide (rGO)@Ag nanowire/poly (ethylene terephthalate) (PET) transparent electrodes for capacitive storage, in which the interfacial structure of rGO film can be tuned by a facile freeze drying technique. The enlarged interlayer spacing of rGO film deteriorated the electronic migration derived from the loose layer structure, whereas about 33-52% of the areal capacitance of TFSCs was boosted as compared with the ones without freeze drying at the same transmittance. It is concluded that the enlarged inter-distance of rGO film could facilitate diffusion and transport of ions in the electrolyte, furthermore, the expanded rGO film could provide more interface to accommodate more ions for storage. The simulation results also confirmed the lower diffusion barrier and larger band gap of rGO with larger interlayer distance. The mechanically robust TFSCs exhibit the maximum energy density of 89.2 nWh cm-2, and the maximum power density of 4.63 µW cm-2 with remaining energy density of 41.1 nWh cm-2, as well as 3000 cyclic stability, demonstrating an efficient strategy toward high performance TFSCs.

18.
Langmuir ; 34(50): 15245-15252, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30428676

RESUMO

Transparent and flexible supercapacitors (TFSCs) are viable power sources for next-generation wearable electronics. The ingenious design of the transparent electrode determines the performance of TFSCs. A percolating film of a pillared graphene layer integrated with a silver nanowire network as the transparent electrode was prepared, by which TFSC devices exhibit a significantly improved performance contrastively. Under the condition of the same transmittance, about 27-72% improvement in the areal capacitance can be achieved. On the one hand, the pillars of carbon nanotube (CNT) were distributed in the graphene layer uniformly, enlarging the inner distance of adjacent graphene layers and providing an open structure for extra ion transport and storage of TFSCs. On the other hand, the introduced CNT could facilitate the electron transport at the direction perpendicular to the graphene basal plane, enhancing the electronic conductivity of the graphene layer. More importantly, the formed percolating film ensures an efficient transport of electron along with the silver nanowire when it encounters the obstacle within the graphene layer, resulting in a highly conductive electrode. The TFSC device with a good compatibility indicates a reliable practicability, which provides a facile route toward the design of high-performance TFSCs.

19.
Nanomaterials (Basel) ; 8(2)2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29373525

RESUMO

A simple and effective method was developed to obtain the electrode for lithium/sulfur (Li/S) batteries with high specific capacity and cycling durability via adopting an interconnected sulfur/activated carbon/graphene (reduced graphene oxide) aerogel (S/AC/GA) cathode architecture. The AC/GA composite with a well-defined interconnected conductive network was prepared by a reduction-induced self-assembly process, which allows for obtaining compact and porous structures. During this process, reduced graphene oxide (RGO) was formed, and due to the presence of oxygen-containing functional groups on its surface, it not only improves the electronic conductivity of the cathode but also effectively inhibits the polysulfides dissolution and shuttle. The introduced activated carbon allowed for lateral and vertical connection between individual graphene sheets, completing the formation of a stable three-dimensionally (3D) interconnected graphene framework. Moreover, a high specific surface area and 3D interconnected porous structure efficiently hosts a higher amount of active sulfur material, about 65 wt %. The designed S/AC/GA composite electrodes deliver an initial capacity of 1159 mAh g-1 at 0.1 C and can retain a capacity of 765 mAh g-1 after 100 cycles in potential range from 1 V to 3 V.

20.
Science ; 349(6252): 1083-7, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26339027

RESUMO

Graphene, a single layer of carbon atoms bonded in a hexagonal lattice, is the thinnest, strongest, and stiffest known material and an excellent conductor of heat and electricity. However, these superior properties have yet to be realized for graphene-derived macroscopic structures such as graphene fibers. We report the fabrication of graphene fibers with high thermal and electrical conductivity and enhanced mechanical strength. The inner fiber structure consists of large-sized graphene sheets forming a highly ordered arrangement intercalated with small-sized graphene sheets filling the space and microvoids. The graphene fibers exhibit a submicrometer crystallite domain size through high-temperature treatment, achieving an enhanced thermal conductivity up to 1290 watts per meter per kelvin. The tensile strength of the graphene fiber reaches 1080 megapascals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA