RESUMO
The development of therapeutic resistance in the majority of patients limits the long-term benefit of ROS1 inhibitor treatment. On-target mutations of the ROS1 kinase domain confer resistance to crizotinib and lorlatinib in more than one-third of acquired resistance cases with no current effective treatment option. As an alternative to stoichiometric inhibition, proteolytic degradation of ROS1 could provide an effective tool to combat resistance generated by these mutations. Our study has identified a potent, orally active ROS1 degrader with an excellent pharmacokinetics profile. The degrader can effectively inhibit ROS1-dependent cell proliferation and tumor growth by degrading the ROS1 kinase, thereby eliminating the active phospho-ROS1. More importantly, the degradation-based therapeutic modality can overcome on-target mutation resistance to tyrosine kinase inhibitors by efficient degradation of the mutated kinase to achieve greater potency than inhibition.
Assuntos
Resistencia a Medicamentos Antineoplásicos , Mutação , Inibidores de Proteínas Quinases , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas , Humanos , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Animais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Administração Oral , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Camundongos , Proteólise/efeitos dos fármacos , Lactamas/farmacologia , Lactamas/química , Crizotinibe/farmacologia , Crizotinibe/química , Descoberta de Drogas , Pirazóis/farmacologia , Pirazóis/química , Pirazóis/farmacocinética , Relação Estrutura-Atividade , Ratos , AminopiridinasRESUMO
Cancer stem cells (CSCs) possess a significant ability to renew themselves, which gives them a strong capacity to form tumors and expand to encompass additional body areas. In addition, they possess inherent resistance to chemotherapy and radiation therapies used to treat many forms of cancer. Scientists have focused on investigating the signaling pathways that are highly linked to the ability of CSCs to renew themselves and maintain their stem cell properties. The pathways encompassed are Notch, Wnt/ß-catenin, hedgehog, STAT3, NF-κB, PI-3K/Akt/mTOR, sirtuin, ALDH, MDM2, and ROS. Recent studies indicate that directing efforts towards CSC cells is essential in eradicating the overall cancer cell population and reducing the likelihood of tumor metastasis. As our comprehension of the mechanisms that stimulate CSC activity, growth, and resistance to chemotherapy advances, the discovery of therapeutic drugs specifically targeting CSCs, such as small-molecule compounds, holds the potential to revolutionize cancer therapy. This review article examines and analyzes the novel anti-CSC compounds that have demonstrated effective and selective targeting of pathways associated with the renewal and stemness of CSCs. We also discussed their special drug metabolism and absorption mechanisms. CSCs have been the subject of much study in cancer biology. As a possible treatment for malignancies, small-molecule drugs that target CSCs are gaining more and more attention. This article provides a comprehensive review of the current state of key small-molecule compounds, summarizes their recent developments, and anticipates the future discovery of even more potent and targeted compounds, opening up new avenues for cancer treatment.
RESUMO
Kiwifruit bacterial canker, caused by Pseudomonas syringae pv. Actinidiae (Psa), is one of the most important diseases in kiwifruit, creating huge economic losses to kiwifruit-growing countries around the world. Metal-based nanomaterials offer a promising alternative strategy to combat plant diseases induced by bacterial infection. However, it is still challenging to design highly active nanomaterials for controlling kiwifruit bacterial canker. Here, a novel multifunctional nanocomposite (ZnO@PDA-Mn) is designed that integrates the antibacterial activity of zinc oxide nanoparticles (ZnO NPs) with the plant reactive oxygen species scavenging ability of catalase (CAT) enzyme-like active sites through introducing manganese modified polydopamine (PDA) coating. The results reveal that ZnO@PDA-Mn nanocomposites can efficiently catalyze the conversion of H2O2 to O2 and H2O to achieve excellent CAT-like activity. In vitro experiments demonstrate that ZnO@PDA-Mn nanocomposites maintain the antibacterial activity of ZnO NPs and induce significant damage to bacterial cell membranes. Importantly, ZnO@PDA-Mn nanocomposites display outstanding curative and protective efficiencies of 47.7% and 53.8% at a dose of 200 µg mL-1 against Psa in vivo, which are superior to those of zinc thiozole (20.6% and 8.8%) and ZnO (38.7% and 33.8%). The nanocomposites offer improved in vivo control efficacy through direct bactericidal effects and decreasing oxidative damage in plants induced by bacterial infection. Our research underscores the potential of nanocomposites containing CAT-like active sites in plant protection, offering a promising strategy for sustainable disease management in agriculture.
RESUMO
The Polycomb group protein SCML2 and the transcriptional cofactor YAP1 regulate diverse cellular biology, including stem cell maintenance, developmental processes, and gene regulation in mammals and flies. However, their molecular and functional interactions are unknown. Here, we show that SCML2 interacts with YAP1, as revealed by immunological assays and mass spectroscopy. We have demonstrated that the steroid hormone androgen regulates the interaction of SCML2 with YAP1 in human tumor cell models. Our proximity ligation assay and GST pulldown showed that SCML2 and YAP1 physically interacted with each other. Silencing SCML2 by RNAi changed the growth behaviors of cells in response to androgen signaling. Mechanistically, this phenomenon is attributed to the interplay between distinct chromatin modifications and transcriptional programs, likely coordinated by the opposing SCML2 and YAP1 activity. These findings suggest that YAP1 and SCML2 cooperate to regulate cell growth, cell survival, and tumor biology downstream of steroid hormones.
RESUMO
Developing new agricultural bactericides is a feasible strategy for stopping the increase in the resistance of plant pathogenic bacteria. Some pentacyclic triterpene acid derivatives were elaborately designed and synthesized. In particular, compound A22 exhibited the best antimicrobial activity against Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas axonopodis pv. citri (Xac) with EC50 values of 3.34 and 3.30 mg L-1, respectively. The antimicrobial mechanism showed that the compound A22 induced excessive production and accumulation of reactive oxygen species (ROS) in Xoo cells, leading to a decrease in superoxide dismutase and catalase enzyme activities and an increase in malondialdehyde content. A22 also produced increases in Xoo cell membrane permeability and eventual cell death. In addition, in vivo experiments showed that A22 at 200 mg L-1 exhibited protective activity against rice bacterial blight (50.44%) and citrus canker disease (84.37%). Therefore, this study provides a paradigm for the agricultural application of pentacyclic triterpene acid.
Assuntos
Oryza , Triterpenos , Xanthomonas , Espécies Reativas de Oxigênio/metabolismo , Amidas/metabolismo , Triterpenos/farmacologia , Triterpenos/metabolismo , Xanthomonas/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Oryza/metabolismo , Triterpenos Pentacíclicos/farmacologia , Triterpenos Pentacíclicos/metabolismo , Doenças das Plantas/microbiologia , Testes de Sensibilidade MicrobianaRESUMO
Androgen receptor (AR) is a viable therapeutic target for lethal castration-resistant prostate cancer (CRPC), because the continued progression of CRPC is mainly driven by the reactivation of AR transcriptional activity. The current FDA-approved AR antagonists binding to ligand binding domain (LBD) become ineffective in CRPC with AR gene amplification, LBD mutation, and the evolution of LBD-truncated AR splice variants. Encouraged by the fact that tricyclic aromatic diterpenoid QW07 has recently been established as a potential N-terminal AR antagonist, this study aims to explore the structure-activity relationship of tricyclic diterpenoids and their potential to suppress AR-positive cell proliferation. Dehydroabietylamine, abietic acid, dehydroabietic acid, and their derivatives were selected, since they have a similar core structure as QW07. Twenty diterpenoids were prepared for the evaluation of their antiproliferative potency on AR-positive prostate cancer cell models (LNCaP and 22Rv1) using AR-null cell models (PC-3 and DU145) as comparisons. Our data indicated that six tricyclic diterpenoids possess greater potency than enzalutamide (FDA-approved AR antagonist) towards LNCaP and 22Rv1 AR-positive cells, and four diterpenoids are more potent than enzalutamide against 22Rv1 AR-positive cells. The optimal derivative possesses greater potency (IC50 = 0.27 µM) and selectivity than QW07 towards AR-positive 22Rv1 cells.
Assuntos
Diterpenos , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Receptores Androgênicos/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Linhagem Celular Tumoral , Antagonistas de Receptores de Andrógenos/farmacologia , Antagonistas de Receptores de Andrógenos/uso terapêutico , Diterpenos/farmacologia , Diterpenos/uso terapêuticoRESUMO
Niclosamide effectively downregulates androgen receptor variants (AR-Vs) for treating enzalutamide and abiraterone-resistant prostate cancer. However, the poor pharmaceutical properties of niclosamide due to its solubility and metabolic instability have limited its clinical utility as a systemic treatment for cancer. A novel series of niclosamide analogs was prepared to systematically explore the structure-activity relationship and identify active AR-Vs inhibitors with improved pharmaceutical properties based on the backbone chemical structure of niclosamide. Compounds were characterized using 1H NMR, 13C NMR, MS, and elemental analysis. The synthesized compounds were evaluated for antiproliferative activity and downregulation of AR and AR-V7 in two enzalutamide-resistant cell lines, LNCaP95 and 22RV1. Several of the niclosamide analogs exhibited equivalent or improved anti-proliferation effects in LNCaP95 and 22RV1 cell lines (B9, IC50 LNCaP95 and 22RV1 = 0.130 and 0.0997 µM, respectively), potent AR-V7 down-regulating activity, and improved metabolic stability. In addition, both a traditional structure-activity relationship (SAR) and 3D-QSAR analysis were performed to guide further structural optimization. The presence of two -CF3 groups of the most active B9 in the sterically favorable field and the presence of the -CN group of the least active B7 in the sterically unfavorable field seem to make B9 more potent than B7 in the antiproliferative activity.
RESUMO
The protein p300 is a positive regulator of cancer progression and is related to many human pathological conditions. To find effective p300/CBP HAT inhibitors, we screened an internal compound library and identified berberine as a lead compound. Next, we designed, synthesized, and screened a series of novel berberine analogs, and discovered that analog 5d was a potent and highly selective p300/CBP HAT inhibitor with IC50 values of 0.070 µM and 1.755 µM for p300 and CBP, respectively. Western blotting further proved that 5d specifically decreased H3K18Ac and interfere with the function of histone acetyltransferase. Although 5d had only a moderate inhibitory effect on the MDA-MB-231 cell line, 5d suppressed the growth of 4T1 tumor growth in mice with a tumor weight inhibition ratio (TWI) of 39.7%. Further, liposomes-encapsulated 5d increased its inhibition of tumor growth to 57.8 % TWI. In addition, 5d has no obvious toxicity to the main organ of mice and the pharmacokinetic study confirmed that 5d has good absorption properties in vivo.
Assuntos
Berberina , Neoplasias , Humanos , Fatores de Transcrição de p300-CBP/metabolismo , Berberina/farmacologia , Berberina/uso terapêutico , Histona Acetiltransferases/metabolismo , AcetilaçãoRESUMO
The adaptive acquisition of resistance to BRAF and MEK inhibitor-based therapy is a common feature of melanoma cells and contributes to poor patient treatment outcomes. Leveraging insights from a proteomic study and publicly available transcriptomic data, we evaluated the predictive capacity of a gene panel corresponding to proteins differentially abundant between treatment-sensitive and treatment-resistant cell lines, deciphering predictors of treatment resistance and potential resistance mechanisms to BRAF/MEK inhibitor therapy in patient biopsy samples. From our analysis, a 13-gene signature panel, in both test and validation datasets, could identify treatment-resistant or progressed melanoma cases with an accuracy and sensitivity of over 70%. The dysregulation of HMOX1, ICAM, MMP2, and SPARC defined a BRAF/MEK treatment-resistant landscape, with resistant cases showing a >2-fold risk of expression of these genes. Furthermore, we utilized a combination of functional enrichment- and gene expression-derived scores to model and identify pathways, such as HMOX1-mediated mitochondrial stress response, as potential key drivers of the emergence of a BRAF/MEK inhibitor-resistant state in melanoma cells. Overall, our results highlight the utility of these genes in predicting treatment outcomes and the underlying mechanisms that can be targeted to reduce the development of resistance to BRAF/MEK targeted therapy.
Assuntos
Melanoma , Proteínas Proto-Oncogênicas B-raf , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteômica , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismoRESUMO
Silibinin, also known as silybin, is isolated from milk thistle (Silybum marianum). Silibinin has been demonstrated to be a good lead compound due to its potential to prevent and treat prostate cancer. Its moderate potency and poor pharmacokinetic profile hindered it from moving forward to therapeutic use. Our research group has been working on optimizing silibinin for the potential treatment of castration-resistant prostate cancer. Our previous studies established 5,7,20-O-trimethylsilybins as promising lead compounds as they can selectively suppress androgen receptor (AR)-positive LNCaP cell proliferation. Encouraged by the promising data, the present study aims to investigate the relationships between the core structure of 5,7,20-O-trimethylsilybin and their antiproliferative activities towards AR-positive (LNCaP) and AR-negative prostate cancer cell lines (PC-3 and DU145). The structure-activity relationships among the four different core structures (including flavanonol-type flavonolignan (silibinin), flavone-type flavonolignan (hydnocarpin D), chalcone-type flavonolignan, and taxifolin (a flavonolignan precursor) indicate that 5,7,20-O-trimethylsilybins are the most promising scaffold to selectively suppress AR-positive LNCaP prostate cancer cell proliferation. Further investigation on the antiproliferative potency of their optically enriched versions of the most promising 5,7,20-O-trimethylsilybins led to the conclusion that (10R,11R) derivatives (silybin A series) are more potent than (10S,11S) derivatives (silybin B series) in suppressing AR positive LNCaP cell proliferation.
RESUMO
Oxidative stress is increased in several cancers including prostate cancer, and is currently being exploited in cancer therapy to induce ferroptosis, a novel nonapoptotic form of cell death. High mobility group A2 (HMGA2), a non-histone protein up-regulated in several cancers, can be truncated due to chromosomal rearrangement or alternative splicing of HMGA2 gene. The purpose of this study is to investigate the role of wild-type vs. truncated HMGA2 in prostate cancer (PCa). We analyzed the expression of wild-type vs. truncated HMGA2 and showed that prostate cancer patient tissue and some cell lines expressed increasing amounts of both wild-type and truncated HMGA2 with increasing tumor grade, compared to normal epithelial cells. RNA-Seq analysis of LNCaP prostate cancer cells stably overexpressing wild-type HMGA2 (HMGA2-WT), truncated HMGA2 (HMGA2-TR) or empty vector (Neo) control revealed that HMGA2-TR cells exhibited higher oxidative stress compared to HMGA2-WT or Neo control cells, which was also confirmed by analysis of basal reactive oxygen species (ROS) levels using 2', 7'-dichlorofluorescin diacetate (DCFDA) dye, the ratio of reduced glutathione/oxidized glutathione (GSH/GSSG) and NADP/NADPH using metabolomics. This was associated with increased sensitivity to RAS-selective lethal 3 (RSL3)-induced ferroptosis that could be antagonized by ferrostatin-1. Additionally, proteomic and immunoprecipitation analyses showed that cytoplasmic HMGA2 protein interacted with Ras GTPase-activating protein-binding protein 1 (G3BP1), a cytoplasmic stress granule protein that responds to oxidative stress, and that G3BP1 transient knockdown increased sensitivity to ferroptosis even further. Endogenous knockdown of HMGA2 or G3BP1 in PC3 cells reduced proliferation which was reversed by ferrostatin-1. In conclusion, we show a novel role for HMGA2 in oxidative stress, particularly the truncated HMGA2, which may be a therapeutic target for ferroptosis-mediated prostate cancer therapy.
RESUMO
A new monoterpene derivative namely dongsunol A (1) and sixteen known compounds (2-17) were isolated from the volva of Phallus dongsun. All compounds were isolated from this fungus for the first time. Their structures and absolute configurations were determined by nuclear magnetic resonance (NMR), HRESIMS spectral data, and electronic circular dichroism (ECD). The new monoterpene derivative (1) exhibited antibacterial activity with a MIC of 200 µg/mL. Other compounds have inhibitory effects on Staphylococcus aureus and Pseudomonas aeruginosa, while have displayed moderate NO inhibitory activity and antineoplastic activity on SMMC-7721 and SW480 in vitro.
RESUMO
ZB716 is a synthetic, steroidal, orally active anti-estrogen agent that is under clinical development for the treatment of estrogen receptor (ER)-positive metastatic breast cancer. The stable isotope-labeled ZB716 was required for use as an internal standard in LC-MS/MS assays. Therefore, a novel deuterated ZB716 (ZB716-d6) as an isotopically labeled internal standard was designed and synthesized through a newly developed route, which prepared ZB716-d6 in eight steps from the commercially available deuterium-labeled starting material [2H6]pentafluoropentanol. This procedure is very practicable and gives the final compound in good yield (19% total yield) and high purity (D, >99%, chemical purity 98%). At present, ZB716-d6 has been successfully used as an internal standard in clinical bioanalysis.
RESUMO
The kinetic effects of co-feeding of dimethyl disulfide (DMDS) and hydrogen on propane dehydrogenation (PDH) over the Pt-Sn-K/Al2O3 catalyst were investigated by the response surface method. The 3-level Box-Behnken design for 4 factors (reaction temperature, propene, hydrogen, and DMDS flow rate) was used to design the experiment. The initial propane conversion, propene selectivity, and coking amount were chosen as responses and the results were fitted by quadratic models. The fresh and coked catalysts were characterized by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM-EDS), thermogravimetry (TG), N2 physisorption, and Fourier-transform infrared spectroscopy (FT-IR). Analysis of variance (ANOVA) results showed that the DMDS flow rate is significant for propane conversion and coking amount while hydrogen flow rate is only significant for the conversion. By using the fitted model for the response surface, it is found that DMDS can significantly reduce the coking amount at the expense of propane conversion, and hydrogen weakly affects the selectivity and coking amount. The optimal conditions to achieve maximum conversion and selectivity and minimum coking amount are not consistent. The DMDS and hydrogen flow rate should be optimized to obtain the maximum economic profit out of the propane dehydrogenation (PDH) process.
RESUMO
A series of 1-oxa-4-azaspiro[4,5]deca-6,9-diene-3,8-dione derivatives containing structural fragments of conjugated dienone have been synthesized previously by our group, however the Michael addition reaction between conjugated dienone and nucleophilic groups in the body may generate harmful and adverse effects. To reduce harmful side effects, the authors started with p-aminophenol to make 1-oxo-4- azaspirodecanedione derivatives, then utilized the Michael addition and cyclopropanation to eliminate α, ß unsaturated olefinic bond and lower the Michael reactivity of the compounds in vivo for optimization. At the same time, heteroatoms are put into the molecules in order to improve the hydrophilicity of the molecules and the binding sites of the molecules and the target molecules, establishing the groundwork for improved antitumor activity. The majority of the compounds had moderate to potent activity against A549 human lung cancer cells, MDA-MB-231 breast cancer cells, and Hela human cervical cancer cells. Among them, the compound 6d showed the strongest effect on A549 cell line with IC50 of 0.26 µM; the compound 8d showed the strongest cytotoxicity on MDA-MB-231 cell line with IC50 of 0.10 µM; and the compound 6b showed the strongest activity on Hela cell line with IC50 of 0.18 µM.
Assuntos
Antineoplásicos , Compostos Aza/farmacologia , Compostos de Espiro/farmacologia , Antineoplásicos/química , Compostos Aza/química , Linhagem Celular Tumoral , Proliferação de Células , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Estrutura Molecular , Compostos de Espiro/síntese química , Relação Estrutura-AtividadeRESUMO
Roughly 268,000 new cases of prostate cancer and 34,000 deaths from prostate cancer are projected by the American Cancer Society to occur in the United States in 2022. Androgen receptor is a key protein in the proliferation and survival of prostate cancer cells and has been revealed to be overexpressed in 30% to 50% of castration-resistant prostate cancer patients. One promising approach to reducing the level of this protein is Proteolysis Targeting Chimeras (PROTACs) that is an emerging drug discovery technology. PROTACs are hetero-bifunctional molecules where one end binds to a protein of interest and the other to an E3 ligase ligand, initiating the Ubiquitin-Proteasome Pathway for protein degradation. Two PROTACs with niclosamide as androgen receptor ligand and VHL-032 as the E3 ligase ligand have been designed and synthesized for suppressing proliferation of androgen receptor-positive prostate cancer cells via degrading androgen receptor. The in vitro antiproliferative assessment suggested that they can selectively suppress PC-3, LNCaP, and 22Rv1 prostate cancer cell proliferation, but cannot inhibit DU145 cell proliferation. However, the mechanism of both compounds in suppressing prostate cancer cell proliferation is not through the AR PROTAC mechanism because they did not degrade AR in our Western Blotting assay up to 1 µM.
Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Humanos , Masculino , Ligantes , Niclosamida/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Proteólise , Receptores Androgênicos/metabolismo , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Breast cancer is one of the most common cancers in the world, and pro-apototic drugs activating the apoptotic pathway are a strategy for anticancer therapy. To explore new antineoplastic agents, a series of novel mono-indolylbenzoquinone derivatives have been designed and synthesized. Compared with the lead bis-indolylbenzoquinones, most of the novel mono-indolylbenzoquinone derivatives have significantly increased their activity against A549, HeLa, and especially, MDA-MB-231 cell lines. Among them, 10d has the lowest IC50 value of 70 nM on MDA-MB-231 cells. Moreover, its oral toxicity is extremely low with an LD50 value of 374 mg/kg and no obvious liver and kidney damage to mice. 10d down-regulated Bcl-2, up-regulated Bax, and increased the release of cytochrome C, caspase3 and 9. 10d also up-regulated the expression of p53, catalase, and HTRA2/Omi. Therefore, 10d may exert its anticancer activity by activating apoptotic pathway and p53 expression. In vivo, 10d suppressed breast cancer 4T1 tumor growth with 36% inhibition ratio of tumor by intraperitoneal injection in mice. Furthermore, a cross-linked cyanoacrylate (CA)-based local sustained-release drug delivery systems (LSRDDSs) improved 10d anticancer activity to 49.8% inhibition of tumor growth. Taken together, 10d could be a promising drug candidate for clinical development to treat metastatic breast cancer.
Assuntos
Antineoplásicos , Neoplasias da Mama , Animais , Apoptose , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Camundongos , Proteína Supressora de Tumor p53RESUMO
Based on the promising results of benzenesulfonamide spirodienones as antineoplastic agents, we have designed and synthesized a series of novel acyl sulfonamides spirodienone for antineoplastic evaluation. Of these, compound 4a exhibited remarkable in vitro antiproliferative activity by arresting the cell cycle and inducing apoptosis of MDA-MB-231 cells. Acute toxicity study has demonstrated 4a at 100 mg/kg dose caused no obvious toxicity to the major organs of mice. Moreover, compound 4a suppressed the growth of murine 4T1 tumor in vivo. Preliminary enzyme assay showed that 4a was a potential MMP2 inhibitor for cancer therapy. In all, these results indicate that compound 4a may be a lead compound for the development of anticancer agents.
Assuntos
Antineoplásicos , Sulfonamidas , Animais , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Camundongos , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/farmacologiaRESUMO
To search for novel androgen receptor (AR) modulators for the potential treatment of castration-resistant prostate cancer (CRPC), naturally occurring silibinin was sought after as a lead compound because it possesses a moderate potency towards AR-positive prostate cancer cells and its chemical scaffold is dissimilar to all currently marketed AR antagonists. On the basis of the structure-activity relationships that we have explored, this study aims to incorporate carbamoyl groups to the alcoholic hydroxyl groups of silibinin to improve its capability in selectively suppressing AR-positive prostate cancer cell proliferation together with water solubility. To this end, a feasible approach was developed to regioselectively introduce a carbamoyl group to the secondary alcoholic hydroxyl group at C-3 without causing the undesired oxidation at C2-C3, providing an avenue for achieving 3-O-carbamoyl-5,7,20-O-trimethylsilybins. The application of the synthetic method can be extended to the synthesis of 3-O-carbamoyl-3',4',5,7-O-tetramethyltaxifolins. The antiproliferative potency of 5,7,20-O-trimethylsilybin and its nine 3-carbamoyl derivatives were assessed in an AR-positive LNCaP prostate cancer cell line and two AR-null prostate cancer cell lines (PC-3 and DU145). Our preliminary bioassay data imply that 5,7,20-O-trimethylsilybin and four 3-O-carbamoyl-5,7,20-O-trimethylsilybins emerge as very promising lead compounds due to the fact that they can selectively suppress AR-positive LNCaP cell proliferation. The IC50 values of these five 5,7,20-O-trimethylsilybins against the LNCaP cells fall into the range of 0.11-0.83 µM, which exhibit up to 660 times greater in vitro antiproliferative potency than silibinin. Our findings suggest that carbamoylated 5,7,20-O-trimethylsilybins could serve as a natural product-based scaffold for new antiandrogens for lethal castration-resistant prostate cancer.
Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Células Tumorais CultivadasRESUMO
Fulvestrant-3-boronic acid (ZB716), an oral selective estrogen receptor degrader (SERD) under clinical development, has been investigated in ADME studies to characterize its absorption, metabolism, and pharmacokinetics. ZB716 was found to have high plasma protein binding in human and animal plasma, and low intestinal mucosal permeability. ZB716 had high clearance in hepatocytes of all species tested. ZB716 was metabolized primarily by CYP2D6 and CYP3A. In human liver microsomes, ZB716 demonstrated relatively low inhibition of CYP1A2, 2C8, 2C9, 2C19, 2D6, and 3A4 (when testosterone was used as the substrate), and no inhibition of CYP2B6 and 3A4 (when midazolam was used as the substrate). In assays for enzyme activity, ZB716 induced CYP1A2, 2B6, and 3A4 in a concentration-dependent manner. Single-dose and repeated-dose pharmacokinetic studies in rats and dogs showed oral bioavailability, dose-proportional drug exposure, and drug accumulation as measured by maximum concentration and area under the concentration-time curve (AUC).