Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomed Chromatogr ; : e5893, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853700

RESUMO

Mongolian medicine Sendeng-4 (SD-4) has demonstrated satisfactory clinical treatment outcomes for rheumatoid arthritis (RA); nevertheless, its bioactive components and the related mechanisms have not yet been clearly elucidated. To explore the bioactive chemical components of SD-4 in the treatment of RA and its possible mechanisms, an High Performance Liquid Chromatography-tandem mass spectrometry (HPLC-MS/MS) method was established to simultaneously quantify the main components in SD-4, and ultraperformance LC-Q-Exactive-MS/MS (UPLC-Q-Exactive-MS/MS) was used to identify the phytochemicals absorbed in the serum. Then, using network pharmacology methods, these components were constructed into a compound-target network of RA to predict possible biological targets of SD-4 as well as potential signaling pathways. Transcriptomics analysis and molecular docking were used to validate the results of network pharmacology. Subsequently, we established a complete Freund's adjuvant-induced RA rat model and observed the anti-RA effects of SD-4 through assessments of foot swelling, ankle diameter, arthritis score, morphology, serum inflammatory factors, and histopathological analysis of synovial tissue. Specifically, reverse transcription-quantitative polymerase chain reaction, Western blot, and immunohistochemical analysis were used in animal experiments to validate the pathways of serum phytochemistry, network pharmacology, and transcriptomics. Tannic acid, gallic acid, corilagin, crocin I, gardenoside, ferulic acid, quercetin, limonin, rutin, chlorogenic acid, verbascoside, catechin, epicatechin, myricetin, and dihydromyricetin in SD-4 showed good linearity within their respective concentration ranges (r ≥ 0.9991); the average recovery rate was 93.77%-109.17% (relative standard deviation < 2%). A total of 37 compounds were identified in serum samples. Based on this, network pharmacology methods collected 739 genes related to these identified compounds in SD-4 and 3807 genes related to RA. Network pharmacology and transcriptomic analysis demonstrated that the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt) signaling pathway is the most relevant pathway affected by SD-4 in RA. In the experiments, SD-4 treatment reduced ankle swelling and arthritis scores in RA rats, improved symptoms, and reduced the production of inflammatory factors. Compared with the RA model group, SD-4 treatment significantly reduced the expression of PI3K-Akt pathway-related messenger RNA and proteins. In addition, immunohistochemical analysis confirmed these results. This study combined serum phytochemistry, network pharmacology, and transcriptomics to demonstrate that SD-4 can alleviate RA by regulating the PI3K-Akt signaling pathway. This research provides a theoretical basis for the clinical application of SD-4 and offers an effective strategy for the identification of bioactive substances in traditional Chinese medicine formulas and the study of their potential mechanisms.

2.
Plants (Basel) ; 13(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38891365

RESUMO

The plant hormone jasmonic acid plays an important role in plant growth and development, participating in many physiological processes, such as plant disease resistance, stress resistance, organ development, root growth, and flowering. With the improvement in living standards, people have higher requirements regarding the quality of vegetables. However, during the growth process of vegetables, they are often attacked by pests and diseases and undergo abiotic stresses, resulting in their growth restriction and decreases in their yield and quality. Therefore, people have found many ways to regulate the growth and quality of vegetable crops. In recent years, in addition to the role that JA plays in stress response and resistance, it has been found to have a regulatory effect on crop quality. Therefore, this study aims to review the jasmonic acid accumulation patterns during various physiological processes and its potential role in vegetable development and quality formation, as well as the underlying molecular mechanisms. The information provided in this manuscript sheds new light on the improvements in vegetable yield and quality.

3.
PeerJ ; 12: e16898, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38332807

RESUMO

Agrobacterium tumefaciens is a soil-borne pathogenic bacterium that causes crown gall disease in many plants. Chemotaxis offers A. tumefaciens the ability to find its host and establish infection. Being an aerobic bacterium, A. tumefaciens possesses one chemotaxis system with multiple potential chemoreceptors. Chemoreceptors play an important role in perceiving and responding to environmental signals. However, the studies of chemoreceptors in A. tumefaciens remain relatively restricted. Here, we characterized a cytoplasmic chemoreceptor of A. tumefaciens C58 that contains an N-terminal globin domain. The chemoreceptor was designated as Atu1027. The deletion of Atu1027 not only eliminated the aerotactic response of A. tumefaciens to atmospheric air but also resulted in a weakened chemotactic response to multiple carbon sources. Subsequent site-directed mutagenesis and phenotypic analysis showed that the conserved residue His100 in Atu1027 is essential for the globin domain's function in both chemotaxis and aerotaxis. Furthermore, deleting Atu1027 impaired the biofilm formation and pathogenicity of A. tumefaciens. Collectively, our findings demonstrated that Atu1027 functions as an aerotaxis receptor that affects agrobacterial chemotaxis and the invasion of A. tumefaciens into its host.


Assuntos
Agrobacterium tumefaciens , Quimiotaxia , Agrobacterium tumefaciens/genética , Quimiotaxia/genética , Tumores de Planta/microbiologia , Plantas , Globinas
4.
Hortic Res ; 10(7): uhad103, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37786729

RESUMO

Carrot (Daucus carota) is an Apiaceae plant with multi-colored fleshy roots that provides a model system for carotenoid research. In this study, we assembled a 430.40 Mb high-quality gapless genome to the telomere-to-telomere (T2T) level of "Kurodagosun" carrot. In total, 36 268 genes were identified and 34 961 of them were functionally annotated. The proportion of repeat sequences in the genome was 55.3%, mainly long terminal repeats. Depending on the coverage of the repeats, 14 telomeres and 9 centromeric regions on the chromosomes were predicted. A phylogenetic analysis showed that carrots evolved early in the family Apiaceae. Based on the T2T genome, we reconstructed the carotenoid metabolic pathway and identified the structural genes that regulate carotenoid biosynthesis. Among the 65 genes that were screened, 9 were newly identified. Additionally, some gene sequences overlapped with transposons, suggesting replication and functional differentiation of carotenoid-related genes during carrot evolution. Given that some gene copies were barely expressed during development, they might be functionally redundant. Comparison of 24 cytochrome P450 genes associated with carotenoid biosynthesis revealed the tandem or proximal duplication resulting in expansion of CYP gene family. These results provided molecular information for carrot carotenoid accumulation and contributed to a new genetic resource.

6.
J Adv Res ; 46: 31-47, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35753652

RESUMO

BACKGROUND: Lycopene is a natural red compound with potent antioxidant activity that can be utilized both as pigment and as a raw material in functional food, and so possesses good commercial prospects. The biosynthetic pathway has already been documented, which provides the foundation for lycopene production using biotechnology. AIM OF REVIEW: Although lycopene production has begun to take shape, there is still an urgent need to alleviate the yield of lycopene. Progress in this area can provide useful reference for metabolic engineering of lycopene production utilizing multiple approaches. KEY SCIENTIFIC CONCEPTS OF REVIEW: Using conventional microbial fermentation approaches, biotechnologists have enhanced the yield of lycopene by selecting suitable host strains, utilizing various additives, and optimizing culture conditions. With the development of modern biotechnology, genetic engineering, protein engineering, and metabolic engineering have been applied for lycopene production. Extraction from natural plants is the main way for lycopene production at present. Based on the molecular mechanism of lycopene accumulation, the production of lycopene by plant bioreactor through genetic engineering has a good prospect. Here we summarized common strategies for optimizing lycopene production engineering from a biotechnology perspective, which are mainly carried out by microbial cultivation. We reviewed the challenges and limitations of this approach, summarized the critical aspects, and provided suggestions with the aim of potential future breakthroughs for lycopene production in plants.


Assuntos
Vias Biossintéticas , Biotecnologia , Licopeno/metabolismo , Engenharia Metabólica/métodos , Reatores Biológicos
7.
PeerJ ; 10: e14602, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570011

RESUMO

Soil salinity has been an increasing problem worldwide endangering crop production and human food security. It is an ideal strategy to excavate stress resistant genes and develop salt tolerant crops. NAC (no apical meristem/Arabidopsis transcription activation factor/cup-shaped cotyledon) transcription factors have been demonstrated to be involved in salt stress response. However, relevant studies have not been observed in garlic, an important vegetable consumed in the world. In this study, a total of 46 AsNAC genes encoding NAC proteins were identified in garlic plant by transcriptome data. Phylogenetic analysis showed that the examined AsNAC proteins were clustered into 14 subgroups. Motif discovery revealed that the conserved domain region was mainly composed of five conserved subdomains. Most of the genes selected could be induced by salt stress in different tissues, indicating a potential role in salt stress response. Further studies may focus on the molecular mechanisms of the AsNAC genes in salt stress response. The results of the current work provided valuable resources for researchers aimed at developing salt tolerant crops.


Assuntos
Arabidopsis , Alho , Humanos , Fatores de Transcrição/genética , Transcriptoma , Arabidopsis/genética , Alho/genética , Ativação Transcricional , Meristema/genética , Filogenia , Cotilédone/genética , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Estresse Salino/genética
8.
Animals (Basel) ; 12(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36359033

RESUMO

Researchers have proposed a variety of classification schemes for the species in the genus Muntiacus (Artiodactyla: Cervidae) based on morphological, molecular, and other evidence, but disputes remain. The Tibetan Yarlung Zangbo Grand Canyon National Nature Reserve in the Eastern Himalayas is an area with a rich diversity of muntjac species. The habitats of many species overlap in this area, but systematic research in this area is lacking. To clarify the species, population and habitat size of muntjac species in the study area, we used camera-traps to monitor muntjacs in the nature reserve from 2013 to 2021 and described and compared morphological characteristics of the muntjac species. Subsequently, we used the MaxEnt model to simulate the habitats of the muntjac species and the Random Encounter Model to estimate the population density and numbers of muntjacs. Three muntjac species were found in the area, namely Muntiacus vaginalis (n = 7788 ± 3866), Muntiacus gongshanensis (n = 6673 ± 2121), and Muntiacus feae (n = 3142 ± 942). The red muntjac has the largest habitat area, the highest population density, and largest size, followed by Gongshan muntjac and Fea's muntjac. This study provides basic data for improving the background knowledge of the animal diversity in the Eastern Himalayan biodiversity hotspot, as well as detailed information and references required by wildlife workers for species identification.

9.
Materials (Basel) ; 15(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35591678

RESUMO

In the present study, isothermal compression tests are conducted for a near-α Ti-3.3Al-1.5Zr-1.2Mo-0.6Ni titanium alloy at deformation temperatures ranging from 1073 K to 1293 K and strain rates ranging from 0.01 s-1 to 10 s-1 on a Gleeble-3500 thermomechanical compressor. The results show that, in the initial stage of the compression, the flow stress rapidly increases to a peak value because of elastic deformation, and then the alloy enters the plastic deformation stage and the flow stress slowly decreases with the increase in strain and tends to gradually stabilize. In the plastic deformation stage, the flow stress significantly decreases with the increase in the deformation temperature and the decrease in strain rate. A flow stress model considering the contribution of the strain is established, and the relative error between the calculated and the experimental values is 3.72%. The flow stress model has higher precision and can efficiently predict the flow behavior in the isothermal compression of the alloy. Furthermore, the processing map of the Ti-3.3Al-1.5Zr-1.2Mo-0.6Ni alloy is drawn. Based on the processing map, the influence of process parameters on power dissipation efficiency and stability parameters is analyzed, and the optimized hot working process parameters are pointed out.

10.
PeerJ ; 10: e12922, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223206

RESUMO

Laccase, as a copper-containing polyphenol oxidase, primarily functions in the process of lignin, anthocyanin biosynthesis, and various abiotic/biotic stresses. In this study, forty-eight laccase members were identified in the eggplant genome. Only forty-two laccase genes from eggplant (SmLACs) were anchored unevenly in 12 chromosomes, the other six SmLACs were mapped on unanchored scaffolds. Phylogenetic analysis indicated that only twenty-five SmLACs were divided into six different groups on the basis of groups reported in Arabidopsis. Gene structure analysis revealed that the number of exons ranged from one to 13. Motif analysis revealed that SmLACs included six conserved motifs. In aspects of gene duplication analysis, twenty-one SmLACs were collinear with LAC genes from Arabidopsis, tomato or rice. Cis-regulatory elements analysis indicated many SmLACs may be involved in eggplant morphogenesis, flavonoid biosynthesis, diverse stresses and growth/development processes. Expression analysis further confirmed that a few SmLACs may function in vegetative and reproductive organs at different developmental stages and also in response to one or multiple stresses. This study would help to further understand and enrich the physiological function of the SmLAC gene family in eggplant, and may provide high-quality genetic resources for eggplant genetics and breeding.


Assuntos
Arabidopsis , Solanum melongena , Solanum melongena/genética , Lacase/genética , Filogenia , Melhoramento Vegetal
11.
Materials (Basel) ; 14(9)2021 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-34065157

RESUMO

The hot deformation behaviors of a new Ti-6Al-2Nb-2Zr-0.4B titanium alloy in the strain rate range 0.01-10.0 s-1 and temperature range 850-1060 °C were evaluated using hot compressing testing on a Gleeble-3800 simulator at 60% of deformation degree. The flow stress characteristics of the alloy were analyzed according to the true stress-strain curve. The constitutive equation was established to describe the change of deformation temperature and flow stress with strain rate. The thermal deformation activation energy Q was equal to 551.7 kJ/mol. The constitutive equation was ε Ë™=e54.41[sinh (0.01σ)]2.35exp(-551.7/RT). On the basis of the dynamic material model and the instability criterion, the processing maps were established at the strain of 0.5. The experimental results revealed that in the (α + ß) region deformation, the power dissipation rate reached 53% in the range of 0.01-0.05 s-1 and temperature range of 920-980 °C, and the deformation mechanism was dynamic recovery. In the ß region deformation, the power dissipation rate reached 48% in the range of 0.01-0.1 s-1 and temperature range of 1010-1040 °C, and the deformation mechanism involved dynamic recovery and dynamic recrystallization.

12.
PeerJ ; 8: e10492, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33354430

RESUMO

Carrot is an important root vegetable crop abundant in bioactive compounds including carotenoids, vitamins, and dietary fibers. Carrot intake and its products are gradually growing owing to its high antioxidant activity. Auxins are a class of plant hormones that control many processes of plant growth and development. Yet, the effects of exogenous application of auxin on lignin biosynthesis and gene expression profiles of lignin-related genes in carrot taproot are still unclear. In order to investigate the effect of exogenous indole-3-butyric acid (IBA) on lignin-related gene profiles, lignin accumulation, anatomical structures and morphological characteristics in carrot taproots, carrots were treated with different concentrations of IBA (0, 50, 100, and 150 µM). The results showed that IBA application significantly improved the growth parameters of carrot. The 100 or 150 µM IBA treatment increased the number and area of xylem vessels, whereas transcript levels of lignin-related genes were restricted, resulting in a decline in lignin content in carrot taproots. The results indicate that taproot development and lignin accumulation may be influenced by the auxin levels within carrot plants.

13.
Hortic Res ; 7: 9, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31934340

RESUMO

Celery (Apium graveolens L.) is a vegetable crop in the Apiaceae family that is widely cultivated and consumed because it contains necessary nutrients and multiple biologically active ingredients, such as apigenin and terpenoids. Here, we report the genome sequence of celery based on the use of HiSeq 2000 sequencing technology to obtain 600.8 Gb of data, achieving ~189-fold genome coverage, from 68 sequencing libraries with different insert sizes ranging from 180 bp to 10 kb in length. The assembled genome has a total sequence length of 2.21 Gb and consists of 34,277 predicted genes. Repetitive DNA sequences represent 68.88% of the genome sequences, and LTR retrotransposons are the main components of the repetitive sequences. Evolutionary analysis showed that a recent whole-genome duplication event may have occurred in celery, which could have contributed to its large genome size. The genome sequence of celery allowed us to identify agronomically important genes involved in disease resistance, flavonoid biosynthesis, terpenoid metabolism, and other important cellular processes. The comparative analysis of apigenin biosynthesis genes among species might explain the high apigenin content of celery. The whole-genome sequences of celery have been deposited at CeleryDB (http://apiaceae.njau.edu.cn/celerydb). The availability of the celery genome data advances our knowledge of the genetic evolution of celery and will contribute to further biological research and breeding in celery as well as other Apiaceae plants.

14.
Protoplasma ; 257(3): 853-861, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31863170

RESUMO

Fruit shape and ripening are major horticultural traits for many fruits and vegetable crops. Changes in fruit shape and ripening are often accomplished by altered cell division or cell expansion patterns. Gibberellic acids (GAs) are essential for tomato fruit development; however, the exact role and the underlying mechanism are still elusive. To elucidate the relationship between gibberellins and fruit shape and ripening in tomato, GA3 and gibberellin biosynthesis inhibitor paclobutrazol (PAC) were applied to tomato. Fruit shape index was increased when GA3 was applied, which was mainly attributed to the increased organ elongation. The expression levels of genes involved in cell elongation and expansion were altered at the same time. In addition, GA delayed the ripening time by regulating the transcript levels of ethylene-related genes. By contrast, PAC application decreased fruit shape index and shortened fruit ripening time. These results demonstrate that manipulation of GA levels can simultaneously influence tomato fruit shape and ripening. Further studies aimed to regulate fruit shape and ripening can be achieved by altering GA levels.


Assuntos
Frutas/crescimento & desenvolvimento , Giberelinas/efeitos adversos , Desenvolvimento Vegetal/efeitos dos fármacos , Solanum lycopersicum/efeitos dos fármacos , Triazóis/efeitos adversos , Solanum lycopersicum/crescimento & desenvolvimento
15.
PeerJ ; 7: e7319, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31341748

RESUMO

Quantitative real-time reverse-transcriptase PCR (qRT-PCR) has been frequently used for detecting gene expression. To obtain reliable results, selection of suitable reference genes is a fundamental and necessary step. Garlic (Allium sativum), a member from Alliaceae family, has been used both as a food flavoring and as a traditional medicine. In the present study, garlic plants were exposed to salt stress (200 mM NaCl) for 0, 1, 4 and 12 h, and garlic roots, bulbs, and leaves were harvested for subsequent analysis. The expression stability of eight candidate reference genes, eukaryotic translation initiation factor 4α (eIF-4α), actin (ACTIN), tubulin ß-7 (TUB7), TAP42-interacting protein of 41 kDa (TIP41), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), SAND family protein (SAND), elongation factor 1 alpha (EF-1α), and protein phosphatase 2A (PP2A) were evaluated by geNorm, NormFinder, and BestKeeper. All genes tested displayed variable expression profiles under salt stress. In the leaf and root group, ACTIN was the best reference gene for normalizing gene expression. In garlic clove, ACTIN and SAND were the least variable, and were suitable for gene expression studies under salt stress; these two genes also performed well in all samples tested. Based on our results, we recommend that it is essential to use specific reference genes in different situations to obtain accurate results. Using a combination of multiple stable reference genes, such as ACTIN and SAND, to normalize gene expression is encouraged. The results from the study will be beneficial for accurate determination of gene expression in garlic and other plants.

16.
Hortic Res ; 6: 69, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231527

RESUMO

Carrots (Daucus carota L.), among the most important root vegetables in the Apiaceae family, are cultivated worldwide. The storage root is widely utilized due to its richness in carotenoids, anthocyanins, dietary fiber, vitamins and other nutrients. Carrot extracts, which serve as sources of antioxidants, have important functions in preventing many diseases. The biosynthesis, metabolism, and medicinal properties of carotenoids in carrots have been widely studied. Research on hormone regulation in the growth and development of carrots has also been widely performed. Recently, with the development of high-throughput sequencing technology, many efficient tools have been adopted in carrot research. A large amount of sequence data has been produced and applied to improve carrot breeding. A genome editing system based on CRISPR/Cas9 was also constructed for carrot research. In this review, we will briefly summarize the origins, genetic breeding, resistance breeding, genome editing, omics research, hormone regulation, and nutritional composition of carrots. Perspectives about future research work on carrots are also briefly provided.

17.
Acta Biochim Biophys Sin (Shanghai) ; 51(5): 524-534, 2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-30939194

RESUMO

Celery is a vital vegetable belonging to the Apiaceae family. The leaves of celery are its main edible part with high nutritional value. Hormone signaling plays diverse and critical roles in controlling plant growth and development. However, the molecular mechanism of hormone regulating growth and development in celery leaves has not been investigated. Here, we aimed to understand the molecular functions of genes related to hormone metabolism in celery leaf growth and development. A total of 77 hormone-related differentially expressed genes (DEGs) were identified from the transcriptome of celery leaves at three development stages. The roles and interactions of DEGs in the growth and development of celery leaves were discussed. The contents of multiple hormones (IAA, ZR, ABA, BR, GA3, and MeJA) in celery leaf development were also detected. The changes of endogenous hormone level during the development of celery leaves could be regulated by the expressions of hormone-related genes. Our results indicated that the plant hormones had a complex regulatory mechanism for the growth of celery leaves. Our current findings will provide potential valuable references for the future research on celery leaf development.


Assuntos
Apium/genética , Perfilação da Expressão Gênica/métodos , Genes de Plantas/genética , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/genética , Transdução de Sinais/efeitos dos fármacos , Apium/crescimento & desenvolvimento , Apium/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Redes Reguladoras de Genes , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais/genética , Transcriptoma
18.
Front Genet ; 10: 247, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30984239

RESUMO

Carrot is an important root vegetable crop with a variety of nutrients. As the main product of carrots, the growth and development of fleshy roots directly determine the yield and quality of carrots. However, molecular mechanism underlying the carrot root formation and expansion is still limited. In our study, isobaric tags for relative and absolute quantification (iTRAQ) was utilized to explore the differentially expressed proteins (DEPs) during different developmental stages of carrot roots. Overall, 2,845 proteins were detected, of which 118 were significantly expressed in all three stages. DEPs that participated in several growth metabolisms were identified, including energy metabolism, defense metabolism, cell growth and shape regulation. Among them, two expansin proteins were obtained. A total of 30 expansin genes were identified based on the carrot genome database. Structure analysis showed that carrot expansin gene family was relatively conserved. Based on the expression analysis, we found that the expression profile of expansins genes was up-regulated during the vigorous growing period of carrot root. Furthermore, there was a consistent relationship between the expression patterns of mRNA and protein. The results indicated that expansin proteins might play important roles during root development in carrot. Our work provided useful information for understanding molecular mechanism of carrot root development.

19.
Med Sci Monit ; 25: 3014-3025, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31017126

RESUMO

BACKGROUND Osteopontin (OPN) is a molecule expressed in numerous cancers including colorectal cancer (CRC) that correlates disease progression. The interaction of OPN that promotes CRC cell migration, invasion, and cancer stem-like cells (CSCs) have not been elucidated. Hence, we aimed to investigate the mechanisms that might be involved. MATERIAL AND METHODS Expression of OPN in tumor tissues derived from patients was monitored with real-time quantitative polymerase chain reaction and western blot. Wound healing and Transwell assay were used to test the differences in migration and invasion in an OPN enriched environment and OPN knockdown condition. Aldehyde dehydrogenase 1 (ALDH1) positive stem cells were isolated using fluorescence-activated cell sorting (FACS) following the protocol of the ALDEFLUOR™ kit. The expression of protein participation in the PI3K-Akt-GSK/3ß-ß/catenin pathway was detected by western blot. RESULTS OPN exhibited increased levels in CRC tumor tissue compared with non-tumor normal tissue and the high level of which correlated with lymphatic metastasis and late TNM stage. Additional rhOPN co-cultured low-expression CRC cells demonstrated more aggressive capability of proliferation, migration, and invasion. For knockdown of OPN in high-expression CRC cells, the bioactivities of proliferation, migration, and invasion were significantly inhibited. Interestingly, the percentage of ALDH1 labeled stem cells was dramatically decreased by OPN inhibition. The phosphorylation of PI3K-Akt-GSK/3ß-ß/catenin pathway was involved in the OPN signaling. Furthermore, Ly294002, a specific PI3K inhibitor, can reverse the promotion of bioactivities and stem cell proportion among rhOPN treated CRC cells. CONCLUSIONS OPN promoted cell proliferation, migration, and invasion, and was accompanied by upregulation of ALDH1-positive CSC in CRC through activation of PI3K-Akt-GSK/3ß-ß/catenin pathway.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Células-Tronco Neoplásicas/metabolismo , Osteopontina/metabolismo , Idoso , Apoptose/fisiologia , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Neoplasias Colorretais/patologia , Progressão da Doença , Feminino , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Células-Tronco Neoplásicas/patologia , Osteopontina/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/métodos , Transdução de Sinais , beta Catenina/metabolismo
20.
Protoplasma ; 256(3): 777-788, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30604245

RESUMO

Gibberellin (GA) is a phytohormone of a biguanide compound that plays an important role throughout the life cycle of a plant. Lignin, a phenylalanine-derived aromatic polymer, can enhance the water transport function and structural resistance of cell walls. This function is also the core on biology of higher terrestrial plants. An appropriate lignin level is important to the quality of leafy vegetables, such as celery. The relationship between gibberellin levels and the occurrence of lignification has not been reported in celery. In this study, the leaf blades and petioles of celery cultivars 'Liuhe Huangxinqin' and 'Jinnan Shiqin' were used as materials, and different concentrations of exogenous gibberellin were applied to analyze the growth and lignin distribution of leaf blades and petioles. It was found that gibberellin treatment could influence the lignin content in celery leaves. Autofluorescence analysis under ultraviolet (UV) excitation showed that gibberellin treatment caused lignification of celery leaf tissue. The expression profiles of 12 genes related to lignin synthesis changed with the increase of gibberellin concentration. Our results showed that gibberellin played a significant role in the accumulation of lignin in the development of celery leaves. This provides a basis for further study on the regulation of lignin metabolism in plants and exerts a vital part in the application of plant growth regulators to production.


Assuntos
Apium/metabolismo , Giberelinas/farmacologia , Lignina/metabolismo , Folhas de Planta/metabolismo , Apium/anatomia & histologia , Apium/genética , Apium/crescimento & desenvolvimento , Vias Biossintéticas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estudos de Associação Genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Mapas de Interação de Proteínas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA