Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37959671

RESUMO

Several studies have explored the biological activities of Citrus aurantium flowers, fruits, and seeds, but the bioactivity of C. aurantium leaves, which are treated as waste, remains unclear. Thus, this study developed a pilot-scale ultrasonic-assisted extraction process using the Box-Behnken design (BBD) for the optimized extraction of active compounds from C. aurantium leaves, and their antityrosinase, antioxidant, antiaging, and antimicrobial activities were evaluated. Under optimal conditions in a 150× scaleup configuration (a 30 L ultrasonic machine) of a pilot plant, the total phenolic content was 69.09 mg gallic acid equivalent/g dry weight, which was slightly lower (3.17%) than the theoretical value. The half maximal inhibitory concentration of C. aurantium leaf extract (CALE) for 2,2-diphenyl-1-picrylhydrazyl-scavenging, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)-scavenging, antityrosinase, anticollagenase, antielastase and anti-matrix metalloprotein-1 activities were 123.5, 58.5, 181.3, 196.4, 216.3, and 326.4 mg/L, respectively. Moreover, the minimal inhibitory concentrations for bacteria and fungi were 150-350 and 500 mg/L, respectively. In total, 17 active compounds were detected in CALE-with linalool, linalyl acetate, limonene, and α-terpineol having the highest concentrations. Finally, the overall transdermal absorption and permeation efficiency of CALE was 95.9%. In conclusion, our CALE demonstrated potential whitening, antioxidant, antiaging, and antimicrobial activities; it was also nontoxic and easily absorbed into the skin as well as inexpensive to produce. Therefore, it has potential applications in various industries.


Assuntos
Anti-Infecciosos , Citrus , Antioxidantes/farmacologia , Ácido Gálico , Anti-Infecciosos/farmacologia , Extratos Vegetais/farmacologia
2.
Molecules ; 28(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36985786

RESUMO

The fruit of Rosa laevigata Michx. (FR), a traditional Chinese herb utilized for the treatment of a variety diseases, has notably diverse pharmacological activities including hepatoprotective, anti-oxidant, and anti-inflammatory effects. Despite ongoing research on illustrating the underlying anti-inflammatory mechanism of FR, the principal mechanism remained inadequately understood. In this study, we investigated in depth the molecular mechanism of the anti-inflammatory actions of the ethanol extract of FR (EFR) and its potential targets using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages in vitro. We showed that EFR effectively ameliorated the overproduction of inflammatory mediators and cytokines, as well as the expression of related genes. It was further demonstrated that LPS-induced activation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) were significantly inhibited by pretreatment with EFR, accompanied by a concomitant decrease in the nuclear translocation of the p65 subunit of NF-κB and activator protein 1 (AP-1). In addition, EFR pretreatment potently prevented LPS-induced decreased phosphorylation of adenosine monophosphate-activated protein kinase (AMPK). Our data also revealed that the activation of AMPK and subsequent inhibition of the mammalian target of the rapamycin (mTOR) signaling pathway was probably responsible for the inhibitory effect of EFR on LPS-induced inflammatory responses, evidenced by reverse changes observed under the condition of AMPK inactivation following co-treatment with the AMPK-specific inhibitor Compound C. Finally, the main components with an anti-inflammatory effect in EFR were identified as madecassic acid, ellagic acid, quinic acid, and procyanidin C1 by LC-MS and testified based on the inhibition of NO production and inflammatory mediator expression. Taken together, our results indicated that EFR was able to ameliorate inflammatory responses via the suppression of MAPKs/NF-κB signaling pathways following AMPK activation, suggesting the therapeutic potential of EFR for inflammatory diseases.


Assuntos
NF-kappa B , Rosa , Animais , Camundongos , NF-kappa B/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Rosa/metabolismo , Lipopolissacarídeos/farmacologia , Frutas/metabolismo , Macrófagos , Transdução de Sinais , Anti-Inflamatórios/uso terapêutico , Células RAW 264.7 , Óxido Nítrico/metabolismo , Mamíferos/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-38189371

RESUMO

Hexavalent chromium (Cr(VI)) is a global environmental pollutant. To reduce the risk caused by Cr(VI), a simple, accurate, reproducible, and inexpensive method for quantifying Cr(VI) in water and soil should be developed. In this study, three types of recombinant Escherichia coli biosensors (namely T7-lux-E. coli, T3-lux-E. coli, and SP6-lux-E. coli biosensor) containing promoters (T7, T3, and SP6), chromate-sensing regulator chrB, and the reporter gene luxAB were constructed. This study investigated the effects of cryogenic freezing temperature and time on trace Cr(VI) measurement by using recombinant E. coli biosensors. The results indicated that the activity of thawed frozen SP6-lux-E. coli cells stored at -20 °C for 270 days did not differ from that of freshly prepared cells. Turbidity and conductivity in water samples and organic matter in soil interfered with Cr(VI) measurement using the biosensor. The SP6-lux-E. coli biosensor exhibited a wide measurement range and a low deviation of <5% for measuring Cr(VI) in various Cr(VI)-contaminated water and soil samples and required only a simple pretreatment or extraction process even after 270-day storage at -20 °C. To the best of our knowledge, this is the first study to report the use of recombinant biosensors for accurately measuring Cr(VI) in both water and soil.


Assuntos
Técnicas Biossensoriais , Poluentes do Solo , Escherichia coli/genética , Cromo/análise , Poluentes do Solo/análise , Água , Solo
4.
J Biosci Bioeng ; 133(6): 547-554, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35256270

RESUMO

Tibetan kefir grain as the starter of milk fermentation has been applied as functional food with many bioactive characteristics. In this study, the milk whey product (TKG-MW) was obtained through the milk fermentation of Tibetan kefir grain containing the dominant Lactobacillus, Acetobacter, and Bacillus after 3 and 6 days of cultivation. Antioxidant, anti-inflammatory, and melanogenesis inhibition capacities under TKG-MW treatment were analyzed. Results revealed that the antioxidation of TKG-MW at 6 days of fermentation was higher than that at 3 days of fermentation according to the DPPH and ABTS+ radical scavenging analysis. However, the anti-inflammation of TKG-MW was only observed at 6 days of fermentation by using lipopolysaccharide-stimulated RAW 264.7 macrophages. The inhibition of mushroom tyrosinase activity by TKG-MW was demonstrated. The decrease of melanin content was verified using α-melanocyte-stimulating hormone-stimulated B16-F10 cell. The real-time quantitative reverse transcription polymerase chain reaction result indicated that the mRNA levels of Tyr, Trp-1, and Trp-2 of the B16 cell involved in melanin synthesis were down-regulated over a two-fold change by the TKG-MW treatment. Additionally, the protein expressions of Tyr, Trp-1, Trp-2, and Mitf of the B16 cell were reduced with the TKG-MW treatment. Organic acids, such as lactic acid, succinic acid, 3-phenyllactic acid, l-pyroglutamic acid, and malic acid, were identified by liquid chromatography-mass spectrometry in TKG-MW and were found to significantly inhibit tyrosinase activity. To the best of our knowledge, this work is the first to report melanogenesis suppression by TKG-MW. Results suggested that the fermentation product of TKG could be applied as a depigmenting agent in food and cosmetics.


Assuntos
Kefir , Animais , Antioxidantes/metabolismo , Fermentação , Kefir/análise , Melaninas/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Tibet , Soro do Leite/química , Soro do Leite/metabolismo
5.
Biosensors (Basel) ; 11(10)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34677313

RESUMO

In this study, we constructed a recombinant Escherichia coli strain with different promoters inserted between the chromate-sensing regulator chrB and the reporter gene luxAB to sense low hexavalent chromium (Cr(VI)) concentrations (<0.05 mg/L); subsequently, its biosensor characteristics (sensitivity, selectivity, and specificity) for measuring Cr(VI) in various water bodies were evaluated. The luminescence intensity of each biosensor depended on pH, temperature, detection time, coexisting carbon source, coexisting ion, Cr(VI) oxyanion form, Cr(VI) concentration, cell type, and type of medium. Recombinant lux-expressing E. coli with the T7 promoter (T7-lux-E. coli, limit of detection (LOD) = 0.0005 mg/L) had the highest luminescence intensity or was the most sensitive for Cr(VI) detection, followed by E. coli with the T3 promoter (T3-lux-E. coli, LOD = 0.001 mg/L) and that with the SP6 promoter (SP6-lux-E. coli, LOD = 0.005 mg/L). All biosensors could be used to determine whether the Cr(VI) standard was met in terms of water quality, even when using thawing frozen cells as biosensors after 90-day cryogenic storage. The SP6-lux-E. coli biosensor had the shortest detection time (0.5 h) and the highest adaptability to environmental interference. The T7-lux-E. coli biosensor-with the optimal LOD, a wide measurement range (0.0005-0.5 mg/L), and low deviation (-5.0-7.9%) in detecting Cr(VI) from industrial effluents, domestic effluents, and surface water-is an efficient Cr(VI) biosensor. This unprecedented study is to evaluate recombinant lux E. coli with dissimilar promoters for their possible practice in Cr(VI) measurement in water bodies, and the biosensor performance is clearly superior to that of past systems in terms of detection time, LOD, and detection deviation for real water samples.


Assuntos
Técnicas Biossensoriais , Cromo/análise , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Bioensaio , Escherichia coli , Limite de Detecção , Medições Luminescentes , Água
6.
Mol Oncol ; 15(8): 2172-2184, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33411363

RESUMO

N6-methyladenosine (m6A) has emerged as the most prevalent post-transcriptional modification on mRNA that contributes prominently to tumorigenesis. However, the specific function of m6A methyltransferase methyltransferase-like 3 (METTL3) in colorectal cancer (CRC) remains elusive. Herein, we explored the biological function of METTL3 in CRC progression. Clinically, METTL3 was frequently upregulated in CRC tissues, cell lines, and plasma samples and its high expression predicted poor prognosis of CRC patients. Functionally, knockdown of METTL3 significantly repressed CRC cell proliferation and migration in vitro, while its overexpression accelerated CRC tumor formation and metastasis both in vitro and in vivo. Mechanistically, METTL3 epigenetically repressed YPEL5 in an m6A-YTHDF2-dependent manner by targeting the m6A site in the coding sequence region of the YPEL5 transcript. Moreover, overexpression of YPEL5 significantly reduced CCNB1 and PCNA expression. Collectively, we identified the pivotal role of METTL3-catalyzed m6A modification in CRC tumorigenesis, wherein it facilitates CRC tumor growth and metastasis through suppressing YPEL5 expression in an m6A-YTHDF2-dependent manner, suggesting a promising strategy for the diagnosis and therapy of CRC.


Assuntos
Adenosina/metabolismo , Proteínas de Ciclo Celular/genética , Neoplasias Colorretais/patologia , Epigênese Genética , Metiltransferases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Carcinogênese , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Humanos , Prognóstico
7.
J Biol Eng ; 15(1): 2, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407661

RESUMO

In this study, we constructed recombinant luminescent Escherichia coli with T7, T3, and SP6 promoters inserted between tol and lux genes as toluene biosensors and evaluated their sensitivity, selectivity, and specificity for measuring bioavailable toluene in groundwater and river water. The luminescence intensity of each biosensor depended on temperature, incubation time, ionic strength, and concentrations of toluene and coexisting organic compounds. Toluene induced the highest luminescence intensity in recombinant lux-expressing E. coli with the T7 promoter [T7-lux-E. coli, limit of detection (LOD) = 0.05 µM], followed by that in E. coli with the T3 promoter (T3-lux-E. coli, LOD = 0.2 µM) and SP6 promoter (SP6-lux-E. coli, LOD = 0.5 µM). Luminescence may have been synergistically or antagonistically affected by coexisting organic compounds other than toluene; nevertheless, low concentrations of benzoate and toluene analogs had no such effect. In reproducibility experiments, the biosensors had low relative standard deviation (4.3-5.8%). SP6-lux-E. coli demonstrated high adaptability to environmental interference. T7-lux-E. coli biosensor-with low LOD, wide measurement range (0.05-500 µM), and acceptable deviation (- 14.3 to 9.1%)-is an efficient toluene biosensor. This is the first study evaluating recombinant lux E. coli with different promoters for their potential application in toluene measurement in actual water bodies.

8.
Artigo em Inglês | MEDLINE | ID: mdl-31662034

RESUMO

Toluene is highly toxic and mutagenic, and it is generally used as an industrial solvent. Thus, toluene removal from air is necessary. To solve the problem of reducing high toluene concentrations with a short gas retention time (GRT), a quorum-sensing molecule [N-(3-oxododecanoyl)-L-homoserine lactone] (OHL) was added to a biotrickling filter (BTF). In this study, a BTF was used to treat synthetic and natural waste gases containing toluene. An extensive analysis was performed to understand the removal efficiency, removal characteristics, and bacterial community of the BTF. The addition of 20 µM OHL to the BTF significantly improved toluene removal, and more than 99.2% toluene removal was achieved at a GRT of 0.5 min when natural waste gas containing toluene (590-1020 ppm or 2.21-3.83 g m-3) was introduced. The maximum inlet load for toluene was 337.9 g m-3 h-1. Moreover, the BTF exhibited satisfactory adaptability to shock loading and shutdown operations. Pseudomonadaceae (33.0%) and Comamonadaceae (26.3%) were predominant bacteria in the system after a 98-day operation. These bacteria were responsible for toluene degradation. The optimal moisture content and low pressure drop for system operations demonstrated that the BTF was energy and cost efficient. Therefore, processing through a BTF with OHL is a favorable technique for toluene treatment.


Assuntos
Poluentes Atmosféricos/isolamento & purificação , Filtração/métodos , Microbiota , Percepção de Quorum , Tolueno/isolamento & purificação , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Poluentes Atmosféricos/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Biodegradação Ambiental , Reatores Biológicos/microbiologia , Filtração/instrumentação , Gases/isolamento & purificação , Gases/metabolismo , Homosserina/análogos & derivados , Homosserina/metabolismo , Microbiota/genética , Tolueno/metabolismo
9.
J Biosci Bioeng ; 128(3): 274-282, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30962101

RESUMO

Many genes of industrial relevance can be found in soil. In this study, metagenome sequencing of paddy soil was performed with 55.68 Gb sequences and 1,787,113 putative open reading frames (ORFs). The functional profiles and metabolic pathway of soil metagenomes were examined using Gene Ontology, Metagenomics RAST, and Kyoto Encyclopedia of Genes and Genomes. To verify the protein function and assembly of ORFs, a putative gene encoding α-galactosidase, namely GalR, which shares 65% identity with an unpublished glycoside hydrolase (GH) 27 family protein, was synthesized using its optimal codon for overexpression in Escherichia coli. GalR was successfully obtained and characterized. The optimal temperature and pH for GalR activity were 30°C and pH 9, respectively. Enzymatic activity indicated that GalR was alkaliphilic and different from acidophilic α-galactosidase in the GH 27 family. Furthermore, 50% of the relative activity of GalR can be attained for 1.7 and 0.7 h preincubation at 40°C and 50°C, respectively. Significant inhibition of GalR was observed in the presence of ethylenediaminetetraacetic acid (EDTA), MgCl2, sodium dodecyl sulfate (SDS), and H2O2; however, it was resistant to 0.1% methanol and ethanol and was slightly activated with NaCl and KCl. The specific activity of GalR was achieved at 11.6 and 0.59 µmol/min/mg of protein using p-nitrophenyl-α-d-galactopyranoside and raffinose as substrates, respectively. Consequently, the metagenomic sequencing-based strategy can provide information for mining novel genes.


Assuntos
Genes Sintéticos , Metagenoma , Metagenômica/métodos , Solo/química , alfa-Galactosidase/genética , alfa-Galactosidase/isolamento & purificação , Clonagem Molecular , Escherichia coli/genética , Galactose/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Peróxido de Hidrogênio , Fases de Leitura Aberta , Rafinose/metabolismo , Sesbania/genética , Microbiologia do Solo , Trifolium/genética
10.
Molecules ; 24(8)2019 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-31013655

RESUMO

Plant-derived extracts are a promising source of new drugs. Schima superba is traditionally used in China for heat clearing, detoxification, and treatment of furuncles. In this study, the anticandidal properties and mechanism of action of S. superba (SSE) were explored using a stem bark extract. SSE possessed high polyphenol and saponin contents of 256.6 ± 5.1 and 357.8 ± 31.5 µg/mg, respectively. A clear inhibition zone was observed for C. albicans growth through the disc diffusion method and the 50% inhibition of C. albicans by SSE was 415.2 µg/mL. Transcriptomic analysis in C. albicans treated with different doses of SSE was conducted through RNA-seq. Average values of 6068 genes and 20,842,500 clean reads were identified from each sample. Among these samples, 1680 and 1956 genes were differentially expressed genes (DEGs) from the SSE treatments of 0.2 and 0.4 mg/mL, respectively. C. albicans growth was inhibited by the changes in gene expression associated with the cell wall and membrane composition including the regulation of chitin degradation and ergosterol biosynthesis. This result could be reflected in the irregularly wrinkled morphology of the ruptured cell as revealed through SEM analysis. ESI-MS and NMR analyses revealed that the major compound purified from SSE was sasanquasaponin III and the 50% inhibition of C. albicans was 93.1 µg/mL. In summary, the traditional Chinese medicine S. superba can be applied as an anticandidal agent in complementary and alternative medicine.


Assuntos
Antifúngicos , Candida albicans/crescimento & desenvolvimento , Casca de Planta/química , Extratos Vegetais , Theaceae/química , Antifúngicos/química , Antifúngicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia
11.
Sensors (Basel) ; 19(6)2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30909431

RESUMO

Chromium (VI) [Cr(VI)] compounds display high toxic, mutagenic, and carcinogenic potential. Biological analysis techniques (e.g., such as enzyme-based or cell-based sensors) have been developed to measure Cr(VI); however, these biological elements are sensitive to the environment, limited to measuring trace Cr(VI), and require deployment offsite. In this study, a three-stage single-chambered microbial fuel cell (SCMFC) biosensor inoculated with Exiguobacterium aestuarii YC211 was developed for in situ, real-time, and continuous Cr(VI) measurement. A negative linear relationship was observed between the Cr(VI) concentration (5⁻30 mg/L) and the voltage output using an SCMFC at 2-min liquid retention time. The theoretical Cr(VI) measurement range of the system could be extended to 5⁻90 mg/L by connecting three separate SCMFCs in series. The three-stage SCMFC biosensor could accurately measure Cr(VI) concentrations in actual tannery wastewater with low deviations (<7%). After treating the wastewater with the SCMFC, the original inoculated E. aestuarii remained dominant (>92.5%), according to the next-generation sequencing analysis. The stable bacterial community present in the SCMFC favored the reliable performance of the SCMFC biosensor. Thus, the three-stage SCMFC biosensor has potential as an early warning device with wide dynamic range for in situ, real-time, and continuous Cr(VI) measurement of tannery wastewater.


Assuntos
Bacillaceae/química , Fontes de Energia Bioelétrica/microbiologia , Técnicas Biossensoriais/métodos , Cromo/análise , Bacillaceae/metabolismo , Análise da Demanda Biológica de Oxigênio , Oxirredução , Águas Residuárias/análise
12.
J Biosci Bioeng ; 127(1): 59-65, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30097404

RESUMO

Asparagus cochinchinensis root (ACR) is used in traditional Chinese medicine. In this study, ACR was first extracted with 25% ethyl acetate (EA) and then fermented by Aspergillus oryzae to enhance its antioxidant activity and evaluate its potential antityrosinase activity. The physiological activity and cytotoxicity of A. oryzae-fermented ACR extract, along with its antityrosinase activity and effects on melanogenic factor levels in human epidermal melanocytes (HEMs), were analyzed and compared with those of the unfermented extract. The results showed that the physiological activity of the fermented extract in vitro or in cells was significantly higher than that of the unfermented extract. The IC50 values for 2,2-diphenyl-1-picrylhydrazine radical scavenging activity, reducing power, and antityrosinase activity in vitro for the fermented extract were 250.6 ± 32.5, 25.7 ± 3.5, and 50.6 ± 3.1 mg/L, respectively. The fermented extract favored cellular antityrosinase activity with low melanin production in human melanoma cells compared with the unfermented extract. The inhibitory mechanism of melanin synthesis by unfermented extract was independent of the tested melanogenesis-related proteins. However, the inhibitory mechanism of the fermented extract was possibly caused by synergistic inhibition of these proteins. Thus, A. oryzae-fermented ACR extract may be used for developing new health food or cosmetic ingredients.


Assuntos
Antioxidantes/farmacologia , Asparagaceae/química , Aspergillus oryzae/metabolismo , Fermentação/efeitos dos fármacos , Extratos Vegetais/farmacologia , Antioxidantes/metabolismo , Antioxidantes/toxicidade , Células Cultivadas , Humanos , Recém-Nascido , Masculino , Melaninas/biossíntese , Monofenol Mono-Oxigenase/metabolismo , Extratos Vegetais/metabolismo , Extratos Vegetais/toxicidade , Testes de Toxicidade
13.
J Biosci Bioeng ; 127(4): 403-410, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30389327

RESUMO

Neoagaro-oligosaccharides prepared by agar hydrolysis have various application fields, including the pharmaceutical, cosmetic, and food industries. In this study, an agarolytic strain was isolated from a saltwater hot spring and identified as Microbulbifer pacificus LD25 by 16S rRNA. The whole genome sequence of M. pacificus LD25 was obtained. It had a size of 4.27 Mb and comprised 3062 predicted genes in 37 contigs with a G+C content of 58.0%. Six agarases were annotated and classified into three families, namely, GH16 (AgaL1), GH86 (AgaL2, AgaL3), and GH50 (AgaL4, AgaL5, AgaL6), which shared 75-96% identities with unpublished hypothetical proteins and agarases. AgaL1, AgaL4, and AgaL6 can be successfully expressed and purified in Escherichia coli. AgaL1 and AgaL4 displayed a significantly agarolytic capability, whereas AgaL6 exhibited a rarely detectable enzymatic activity. The optimal temperature and pH required for the activity of AgaL1 and AgaL4 was 50°C and 60°C, respectively, at pH 7. The specific activities of AgaL1 and AgaL4 were achieved at 16.8 and 9.6 U per mg of protein. Both agarases were significantly inhibited in the presence of EDTA, MgO, ZnCl2, and H2O2. However, AgaL1 was resistant to 0.1% SDS and AgaL4 was slightly activated by CaCl2. Substrate hydrolysis detected by LC-MS/MS analysis indicated that neoagarobiose was the main product during AgaL1 and AgaL4 catalysis. Furthermore, AgaL4 was thermostable and retained over 93% of its relative activity after pre-incubation at 70°C for 180 min. Consequently, M. pacificus LD25 has a potential for agarase production in E. coli and industrial applications.


Assuntos
Alteromonadaceae/enzimologia , Alteromonadaceae/genética , Genoma Bacteriano , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Fontes Termais/microbiologia , Alteromonadaceae/química , Alteromonadaceae/metabolismo , Sequência de Bases , Cromatografia Líquida , DNA Bacteriano/análise , Dissacarídeos/metabolismo , Estabilidade Enzimática , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Glicosídeo Hidrolases/análise , Glicosídeo Hidrolases/química , Hidrólise , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA , Espectrometria de Massas em Tandem
14.
Oxid Med Cell Longev ; 2018: 7858094, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30159118

RESUMO

A polyphenol-enriched fraction (PEF) from Acalypha wilkesiana, whose leaves have been traditionally utilized for the treatment of diverse medical ailments, was investigated for the anti-inflammatory effect and molecular mechanisms by using lipopolysaccharide- (LPS-) stimulated RAW 264.7 macrophages and acetaminophen- (APAP-) induced liver injury mouse model. Results showed that PEF significantly attenuated LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production and suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2) in RAW 264.7 macrophages. PEF also reduced the secretion of proinflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin- (IL-) 1ß, and IL-6 in LPS-stimulated RAW 264.7 macrophages. Moreover, PEF potently inhibited LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs) as well as the activation of nuclear factor-κB (NF-κB) by preventing the degradation of inhibitor κB-α (IκB-α). In vivo, PEF pretreatment ameliorated APAP-induced liver injury and hepatic inflammation, as presented by decreased hepatic damage indicators and proinflammatory factors at both plasma and gene levels. Additionally, PEF pretreatment remarkably diminished Toll-like receptor 3 (TLR3) and TLR4 expression and the subsequent MAPKs and NF-κB activation. HPLC analysis revealed that two predominantly polyphenolic compounds present in PEF were geraniin and corilagin. These results indicated that PEF has an anti-inflammatory effect, and its molecular mechanisms may be involved in the inactivation of the TLR/MAPK/NF-κB signaling pathway, suggesting the therapeutic potential of PEF for inflammatory diseases.


Assuntos
Acalypha/química , Acetaminofen/efeitos adversos , Anti-Inflamatórios/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/complicações , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Extratos Vegetais/química , Animais , Anti-Inflamatórios/farmacologia , Camundongos , Polifenóis
15.
J Food Sci Technol ; 55(6): 2310-2317, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29892131

RESUMO

Milkfish (Chanos chanos), which is resistant to water quality changes is the fourth largest aquaculture commodity. Abandoned wastes of fish scale and bones aggravate environmental pollution. In this study, the effect of collagen peptides isolated from milkfish scales (MSCP) by pepsin-soluble collagen method on cell viability was investigated. The antioxidant, anti-inflammatory, and DNA-protective activities of MSCP were also evaluated. Results revealed that more than 95% of viable cells were retained in human keratinocytes after addition of 100 mg/mL MSCP. Measurement of DPPH· and ABTS· + radical scavenging activities and cellular reactive oxygen species revealed the high antioxidant activities of MSCP. MSCP demonstrated anti-inflammatory activities by reducing lipoxygenase activity and nitric oxide (NO·) radicals. Moreover, DNA electrophoresis assay indicated that MSCP treatment can directly protect against cyclobutane di-pyrimidine production and DNA single-strand breaks, which are harmful effects of UV radiation and H2O2. Given its antioxidant, anti-inflammatory, and DNA-protective activities, MSCP has potential applications in cosmeceuticals and supplementary health food.

16.
Oxid Med Cell Longev ; 2017: 3631565, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28626497

RESUMO

Folium Microcos (FM), the leaves of Microcos paniculata L., shows various biological functions including antioxidant activity and α-glucosidase inhibitory effect. However, its therapeutic potential in acute liver injury is still unknown. This study investigated the hepatoprotective effect and underlying mechanisms of the polyphenol-enriched fraction (FMF) from Folium Microcos. FMF exhibited strong free radical scavenging activities and prevented HepG2/Hepa1-6 cells from hydrogen peroxide- (H2O2-) induced ROS production and apoptosis in vitro. Antioxidant activity and cytoprotective effects were further verified by alleviating APAP-induced hepatotoxicity in mice. Western blot analysis revealed that FMF pretreatment significantly abrogated APAP-mediated phosphorylation of MAPKs, activation of proapoptotic protein caspase-3/9 and Bax, and restored expression of antiapoptotic protein Bcl2. APAP-intoxicated mice pretreated with FMF showed increased nuclear accumulation of nuclear factor erythroid 2-related factor (Nrf2) and elevated hepatic expression of its target genes, NAD(P)H:quinine oxidoreductase 1 (NQO1) and hemeoxygenase-1(HO-1). HPLC analysis revealed the four predominantly phenolic compounds present in FMF: narcissin, isorhamnetin-3-O-ß-D-glucoside, isovitexin, and vitexin. Consequently, these findings indicate that FMF possesses a hepatoprotective effect against APAP-induced hepatotoxicity mainly through dual modification of ROS/MAPKs/apoptosis axis and Nrf2-mediated antioxidant response, which may be attributed to the strong antioxidant activity of phenolic components.


Assuntos
Acetaminofen/efeitos adversos , Folhas de Planta/química , Plantas Medicinais/química , Polifenóis/farmacologia , Animais , Apoptose , Doença Hepática Induzida por Substâncias e Drogas , Humanos , Fígado/metabolismo , Masculino , Camundongos , Estrutura Molecular , Estresse Oxidativo
17.
Artigo em Inglês | MEDLINE | ID: mdl-28489972

RESUMO

A novel two-chamber microbial fuel cell (MFC) operation with a continuous anaerobic-aerobic decolorization system was developed to improve the degradation of the triphenylmethane dye, Victoria blue R (VBR). In addition, bioelectricity was generated during the VBR degradation process, and the operation parameters were optimized. The results indicated that the VBR removal efficiency and electricity generation were affected by the VBR concentration, liquid retention time (LRT), external resistance, gas retention time (GRT), and shock loading. The optimal operation parameters were as follows: VBR concentration, 600 mg L-1; LRT, 24 h; external resistance, 3300 Ω; and GRT, 60 s. Under these operating conditions, the VBR removal efficiency, COD removal efficiency, and power density were 98.2% ± 0.3%, 97.6% ± 0.5%, and 30.6 ± 0.4 mW m-2, respectively. According to our review of the relevant literature, this is the first paper to analyze the electrical characteristics of a continuous two-chamber MFC operation and demonstrate the feasibility of the simultaneous electricity generation and decolorization of VBR.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Eletroquímicas/métodos , Corantes de Rosanilina/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Acinetobacter calcoaceticus/crescimento & desenvolvimento , Fontes de Energia Bioelétrica/microbiologia , Eletricidade , Eletrodos , Estudos de Viabilidade , Shewanella putrefaciens/crescimento & desenvolvimento , Águas Residuárias/química , Águas Residuárias/microbiologia
18.
J Biosci Bioeng ; 123(6): 679-684, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28254340

RESUMO

Angelica dahurica root (ADR), which shows strong antioxidant activity, is used in Chinese medicine. This study evaluated the tyrosinase inhibitory and antioxidant activities of ADR extracts fermented by four different probiotic bacteria: Bifidobacterium bifidum, Bifidobacterium lactis, Lactobacillus acidophilus, and Lactobacillus brevis. The ADR was first extracted using distilled water, 70% ethanol, and ethyl acetate, and then fermented by probiotic bacteria. The physiological characteristics of these fermented extracts, namely the antityrosinase activity, antioxidant activity, phenolic composition, and phenolic content, were evaluated and compared with those of unfermented extracts. Results showed that the water extracts after fermentation by probiotic bacteria exhibited the most favorable physiological characteristics. Among the extracts fermented by these probiotic bacteria, L. acidophilus-fermented ADR extract showed the most favorable physiological characteristics. The optimal IC50 values for antityrosinase activity, DPPH radical scavenging activity, and reducing power for L. acidophilus-fermented ADR extract were 0.07 ± 0.03, 0.12 ± 0.01, and 0.68 ± 0.06 mg/mL, respectively. Furthermore, the physiological activities of fermented extracts were considerably higher than those of unfermented extracts. The tyrosinase inhibition and melanin content of B16F10 melanoma cells, and cytotoxicity effects of the fermented ADR extracts on B16F10 cells were also evaluated. We found that the L. acidophilus-fermented ADR extract at 1.5 mg/mL showed significant cellular antityrosinase activity with low melanin production in B16F10 cells and was noncytotoxic to B16F10 cells. Among all probiotic bacteria, water-extracted ADR fermented by L. acidophilus for 48 h was found to be the best skincare agent or antioxidant agent.


Assuntos
Angelica/química , Fermentação , Bactérias Gram-Positivas/metabolismo , Monofenol Mono-Oxigenase/antagonistas & inibidores , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Probióticos/metabolismo , Animais , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Melaninas/biossíntese , Melanoma Experimental/patologia , Camundongos , Oxirredução , Extratos Vegetais/isolamento & purificação
19.
Sensors (Basel) ; 16(8)2016 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-27537887

RESUMO

Fast hexavalent chromium (Cr(VI)) determination is important for environmental risk and health-related considerations. We used a microbial fuel cell-based biosensor inoculated with a facultatively anaerobic, Cr(VI)-reducing, and exoelectrogenic Ochrobactrum anthropi YC152 to determine the Cr(VI) concentration in water. The results indicated that O. anthropi YC152 exhibited high adaptability to pH, temperature, salinity, and water quality under anaerobic conditions. The stable performance of the microbial fuel cell (MFC)-based biosensor indicated its potential as a reliable biosensor system. The MFC voltage decreased as the Cr(VI) concentration in the MFC increased. Two satisfactory linear relationships were observed between the Cr(VI) concentration and voltage output for various Cr(VI) concentration ranges (0.0125-0.3 mg/L and 0.3-5 mg/L). The MFC biosensor is a simple device that can accurately measure Cr(VI) concentrations in drinking water, groundwater, and electroplating wastewater in 45 min with low deviations (<10%). The use of the biosensor can help in preventing the violation of effluent regulations and the maximum allowable concentration of Cr(VI) in water. Thus, the developed MFC biosensor has potential as an early warning detection device for Cr(VI) determination even if O. anthropi YC152 is a possible opportunistic pathogen.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Técnicas Biossensoriais/métodos , Cromo/isolamento & purificação , Ochrobactrum anthropi/química , Anaerobiose , Cromo/toxicidade , Ochrobactrum anthropi/genética , Esgotos/química , Esgotos/microbiologia , Águas Residuárias/química , Purificação da Água/métodos
20.
Sci Rep ; 6: 29969, 2016 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-27426693

RESUMO

Without a vaccine, hepatitis C virus (HCV) remains a significant threat, putting 170-300 million carriers worldwide at risk of cirrhosis and hepatocellular carcinoma. Although the direct-acting antivirals targeting HCV replication have revolutionized the treatment of hepatitis C, several obstacles persist, including resistance development, potential side-effects, and the prohibitive cost that limits their availability. Furthermore, treatment of HCV re-infection in liver transplantation remains a significant challenge. Developing novel antivirals that target viral entry could help expand the scope of HCV therapeutics and treatment strategies. Herein, we report (4R,6S)-2-dihydromenisdaurilide (DHMD), a natural butenolide, as an efficient inhibitor of HCV entry. Specifically, DHMD potently inhibited HCV infection at non-cytotoxic concentration. Examination on the viral life cycle demonstrated that DHMD selectively targeted the early steps of infection while leaving viral replication/translation and assembly/release unaffected. Furthermore, DHMD did not induce an antiviral interferon response. Mechanistic dissection of HCV entry revealed that DHMD could inactivate cell-free virus, abrogate viral attachment, and inhibit viral entry/fusion, with the most pronounced effect observed against the viral adsorption phase as validated using ELISA and confocal microscopy. Due to its potency, DHMD may be of value for further development as an entry inhibitor against HCV, particularly for application in transplant setting.


Assuntos
4-Butirolactona/análogos & derivados , Hepacivirus/fisiologia , Internalização do Vírus/efeitos dos fármacos , 4-Butirolactona/química , 4-Butirolactona/farmacologia , 4-Butirolactona/uso terapêutico , Adsorção , Antivirais/química , Antivirais/farmacologia , Antivirais/uso terapêutico , Linhagem Celular Tumoral , Ensaio de Imunoadsorção Enzimática , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Hepatite C/imunologia , Humanos , Imunidade/efeitos dos fármacos , Microscopia Confocal , Phyllanthus/química , Reprodutibilidade dos Testes , Vírion/efeitos dos fármacos , Vírion/metabolismo , Ativação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA