Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(19): 25268-25279, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38691002

RESUMO

Modern electrical applications urgently need flexible polymer films with a high dielectric constant (εr) and low loss. Recently, the MXene-filled percolative composite has emerged as a potential material choice because of the promised high εr. Nevertheless, the typically accompanied high dielectric loss hinders its applications. Herein, a facile and effective surface modification strategy of cladding Ti3C2Tx MXene (T = F or O; FMX) with fluorographene (FG) via self-assembly is proposed. The obtained FMX@FG hybrid yields high εr (up to 108 @1 kHz) and low loss (loss tangent tan δ = 1.16 @ 1 kHz) in a ferroelectric polymer composite at a low loading level (the equivalent of 1.5 wt % FMX), which is superior to its counterparts in our work (e.g., FMX: εr = 104, tan δ = 10.71) and other studies. It is found that the FG layer outside FMX plays a critical role in both the high dielectric constant and low loss from experimental characterizations and finite element simulations. For one thing, FG with a high F/C ratio would induce a favorable structure of high ß-phase crystallinity, extensive microcapacitor networks, and abundant interfacial dipoles in polymer composites that account for the high εr. For another, FG, as a highly insulating layer, can inhibit the formation of conductive networks and inter-FMX electron tunneling, which is responsible for conduction loss. The results demonstrate the potential of a self-assembled FMX@FG hybrid for high εr and low loss polymer composite films and offer a new strategy for designing advanced polymer composite dielectrics.

2.
Cardiovasc Diabetol ; 23(1): 160, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715043

RESUMO

BACKGROUND: Diabetic cardiomyopathy (DCM) is a crucial complication of long-term chronic diabetes that can lead to myocardial hypertrophy, myocardial fibrosis, and heart failure. There is increasing evidence that DCM is associated with pyroptosis, a form of inflammation-related programmed cell death. Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor ß superfamily, which regulates oxidative stress, inflammation, and cell survival to mitigate myocardial hypertrophy, myocardial infarction, and vascular injury. However, the role of GDF11 in regulating pyroptosis in DCM remains to be elucidated. This research aims to investigate the role of GDF11 in regulating pyroptosis in DCM and the related mechanism. METHODS AND RESULTS: Mice were injected with streptozotocin (STZ) to induce a diabetes model. H9c2 cardiomyocytes were cultured in high glucose (50 mM) to establish an in vitro model of diabetes. C57BL/6J mice were preinjected with adeno-associated virus 9 (AAV9) intravenously via the tail vein to specifically overexpress myocardial GDF11. GDF11 attenuated pyroptosis in H9c2 cardiomyocytes after high-glucose treatment. In diabetic mice, GDF11 alleviated cardiomyocyte pyroptosis, reduced myocardial fibrosis, and improved cardiac function. Mechanistically, GDF11 inhibited pyroptosis by preventing inflammasome activation. GDF11 achieved this by specifically binding to apoptosis-associated speck-like protein containing a CARD (ASC) and preventing the assembly and activation of the inflammasome. Additionally, the expression of GDF11 during pyroptosis was regulated by peroxisome proliferator-activated receptor α (PPARα). CONCLUSION: These findings demonstrate that GDF11 can treat diabetic cardiomyopathy by alleviating pyroptosis and reveal the role of the PPARα-GDF11-ASC pathway in DCM, providing ideas for new strategies for cardioprotection.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Fibrose , Fatores de Diferenciação de Crescimento , Inflamassomos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos , Piroptose , Transdução de Sinais , Animais , Piroptose/efeitos dos fármacos , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/prevenção & controle , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Linhagem Celular , Inflamassomos/metabolismo , Masculino , Fatores de Diferenciação de Crescimento/metabolismo , Ratos , Glicemia/metabolismo , Camundongos , Glucose/metabolismo , Glucose/toxicidade , Proteínas Morfogenéticas Ósseas , PPAR alfa
3.
ACS Nano ; 18(12): 8827-8838, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38497593

RESUMO

The practical application of lithium metal batteries is hindered by the lithium dendrite issue, which is seriously affected by the composition and structure of the solid electrolyte interphase (SEI). Modifying the SEI can regulate lithium dendrite formation and growth. Here, we experimentally realize a Li protective layer of LiTFSI-ether electrolyte induced a natural SEI grafted on graphene nanoribbons (SEI@GNRs) via their in situ reactions. The experimental results and theoretical calculations uncover that the 3D structure of SEI@GNRs can reduce the local current density and Li+ flux. The natural SEI in SEI@GNRs, especially the rich inorganic species of LiF, Li3N, and Li2S, decreases the Li+ nucleation overpotential, makes Li+ ion deposition and nucleation uniform, and isolates electron transport. Their synergetic effect suppresses Li dendrite formation and growth, increasing the electrochemical performance of lithium metal batteries. The design strategy is beneficial for the development of lithium metal batteries.

4.
Small ; 20(6): e2304723, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37797197

RESUMO

Aqueous Zn-ion batteries are the ideal candidate for large-scale energy storage systems owing to their high safety and low cost. However, the uncontrolled deposition and parasitic reaction of Zn metal anode hinder their commercial application. Here, the 2D metal-organic-framework (MOF) nanoflakes covered on the surface of Zn are proposed to enable dendrite-free for long lifespan Zn metal batteries. The MOF can facilitate the desolvation process to accelerate reaction kinetic due to its special channel structure. The abundant zincopilicity sites of MOF can realize the homogenous Zn2+ deposition. Consequently, their synergetic effect makes the MOF protected Zn anode good electrochemical performance with a long cycle life of 1400 h at 1 mA cm-2 and a high depth of discharge of 30 mAh cm-2 (DOD ≈ 54%) continued for over 700 h. This work provides a novel strategy for high-performance rechargeable Zn-ion batteries.

5.
Small ; 20(22): e2304786, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38135879

RESUMO

Solid-state symmetrical battery represents a promising paradigm for future battery technology. However, its development is hindered by the deficiency of high-performance bipolar electrodes and compatible solid electrolytes. Herein, a quasi-solid-state all-V2O5 battery constructed by a binder-free carbon fabric-V2O5 nanowires@graphene (CVOG) bipolar electrode and a softly cross-linked polyethylene oxide-based solid polymer electrolyte (SPE) is reported. The synergetic effect of nano-structuring of V2O5, hierarchical conductive network, and graphene wrapping endows the CVOG electrode with boosted reaction kinetics and suppressed vanadium dissolution. The cathodic and anodic reactions of CVOG are decoupled by electrochemical analysis, conceiving the feasibility of constructing all-V2O5 full battery. In manifesting the solid-state all-V2O5 battery, the robust and elastic SPE exhibits high ionic conductivity, tight/self-adaptable electrolyte-electrode contact, and a low charge-transfer barrier. The resultant solid-state full battery exhibits a high reversible capacity of 158 mAh g-1 at 0.1 C, good capacity retention of over 61% from 0.1 C to 2 C, and remarkable cycling stability of 77% capacity retention after 1000 cycles at 1 C, which surpass other solid-state symmetrical batteries. Hence, this work provides a practice of high-performance solid-state batteries with symmetrical configuration and is constructive for next-generation battery technology.

6.
Materials (Basel) ; 16(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37241461

RESUMO

The radioactive corrosion products 58Co and 60Co in the primary loops of pressurized water reactors (PWRs) are the main sources of radiation doses to which workers in nuclear power plants are exposed. To understand cobalt deposition on 304 stainless steel (304SS), which is the main structural material used in the primary loop, the microstructural characteristics and chemical composition of a 304SS surface layer immersed for 240 h in borated and lithiated high-temperature water containing cobalt were investigated with scanning electron microscopy (SEM), X-ray diffraction (XRD), laser Raman spectroscopy (LRS), X-ray photoelectron spectroscopy (XPS), glow discharge optical emission spectrometry (GD-OES), and inductively coupled plasma emission mass spectrometry (ICP-MS). The results showed that two distinct cobalt deposition layers (an outer layer of CoFe2O4 and an inner layer of CoCr2O4) were formed on the 304SS after 240 h of immersion. Further research showed that CoFe2O4 was formed on the metal surface by coprecipitation of the iron preferentially dissolved from the 304SS surface with cobalt ions from the solution. The CoCr2O4 was formed by ion exchange between the cobalt ions entering the metal inner oxide layer and (Fe, Ni) Cr2O4. These results are useful in understanding cobalt deposition on 304SS and have a certain reference value for exploring the deposition behavior and mechanism of radionuclide cobalt on 304SS in the PWR primary loop water environment.

7.
Sensors (Basel) ; 22(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36298389

RESUMO

Traditionally, pavement safety performance in terms of texture, friction, and hydroplaning speed are measured separately via different devices with various limitations. This study explores the feasibility of using a novel 0.1 mm 3D Safety Sensor for pavement safety evaluation in a non-contact and continuous manner with a single hardware sensor. The 0.1 mm 3D images were collected for pavement safety measurement from 12 asphalt concrete (AC) and Portland cement concrete (PCC) field sites with various texture characteristics. The results indicate that the Safety Sensor was able to measure pavement texture data as traditional devices do with better repeatability. Moreover, pavement friction numbers can be estimated using 0.1 mm 3D data via the proposed 3D texture parameters with good accuracy using an artificial neural network, especially for asphalt pavement. Lastly, a case study of pavement hydroplaning speed prediction was performed using the Safety Sensor. The results demonstrate the potential of using ultra high-resolution 3D imaging to measure pavement safety, including texture, friction, and hydroplaning, in a non-contact, continuous, and accurate manner.


Assuntos
Hidrocarbonetos , Imageamento Tridimensional , Lasers , Tecnologia
8.
J Colloid Interface Sci ; 608(Pt 2): 1162-1172, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34735852

RESUMO

Increasing the electrochemical stability window and working temperature range of supercapacitor aqueous electrolyte is the major task in order to advance aqueous electrolyte-based supercapacitors. Here, a supramolecular induced new electrolyte of lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) in dimethyl sulfoxide (DMSO) and water co-solvent system is proposed. Adjusting the coordination structure among LiTFSI, DMSO, and water in the electrolyte via supramolecular interactions results in its high ionic conductivity, low viscosity, wide electrochemical stability window, and large working temperature range. The new electrolyte-based supercapacitors can work in 2.40 V working potential and 130 °C working-temperature range from -40 to 90 °C. The devices exhibit good electrochemical performances, especially the energy density over 21 Wh kg-1, which is much higher than that with traditional aqueous electrolytes (<10 Wh kg-1). The work paves a way to develop high-performance aqueous electrolytes for supercapacitors.

9.
Small ; 17(45): e2104557, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34643326

RESUMO

MnO2 -based material is one of the most promising cathode candidates of aqueous zinc-ion batteries (ZIBs), but its commercialization is hindered by the sluggish reaction kinetics and poor structural stability. Herein, a hierarchical framework consisting of core-shell structured carbon nanotubes@K-birnessite-MnO2 enwrapped by graphene/carbon black bicomponent networks (CNT@KMO@GC) via a simple method for ZIBs is designed and developed. The hierarchical framework characterized with favorable K+ preintercalation, δ-phase, and vertically aligned nanoflake arrays of KMO and 3D electrically conductive network shows the enhanced electronic/ionic conductivity and improved wettability with electrolyte, resulting in the fast charge/mass transport and stable structural stability of CNT@KMO@GC. When used as cathode in ZIBs, CNT@KMO@GC exhibits exciting electrochemical performance with remarkable capacity (405.5 mAh g-1 at 0.30 A g-1 ), high rate performance (166.6 mAh g-1 up to 10.0 A g-1 ), and impressive cycling stability (almost no capacity decay after 2000 cycles and 77.3% retention after 10 000 cycles at 10.0 A g-1 ). The energy storage mechanism of CNT@KMO@GC is clarified as H+ /Zn2+ coinsertion/extraction via electrochemical analysis and ex situ characterization. This study offers an innovative paradigm for the advance of ZIBs.

10.
PLoS One ; 15(11): e0242483, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33216786

RESUMO

For decades, traditional correlation analysis and regression models have been used in social science research. However, the development of machine learning algorithms makes it possible to apply machine learning techniques for social science research and social issues, which may outperform standard regression methods in some cases. Under the circumstances, this article proposes a methodological workflow for data analysis by machine learning techniques that have the possibility to be widely applied in social issues. Specifically, the workflow tries to uncover the natural mechanisms behind the social issues through a data-driven perspective from feature selection to model building. The advantage of data-driven techniques in feature selection is that the workflow can be built without so much restriction of related knowledge and theory in social science. The advantage of using machine learning techniques in modelling is to uncover non-linear and complex relationships behind social issues. The main purpose of our methodological workflow is to find important fields relevant to the target and provide appropriate predictions. However, to explain the result still needs theory and knowledge from social science. In this paper, we trained a methodological workflow with left-behind children as the social issue case, and all steps and full results are included.


Assuntos
Criança Abandonada/estatística & dados numéricos , Aprendizado de Máquina , Modelos Teóricos , Ciências Sociais/métodos , Fluxo de Trabalho , Algoritmos , Criança , China , Análise de Dados , Educação/estatística & dados numéricos , Humanos , Redes Neurais de Computação , Pais
11.
Small ; 16(40): e2003816, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32794365

RESUMO

Exploring new battery technologies will promote the advance of energy storage systems. Designing a symmetrical-structured rechargeable battery with the same electrode materials is a meaningful exploration for battery technology. Here, a solution-processed all-V2 O5 rechargeable battery with V2 O5 as both anode and cathode is presented, in which the anionic/cationic redox reactions are decoupled by precisely clamping its working potential windows. The battery shows good electrochemical performance with high capacity of 151 mAh g-1 at 0.10 C, good rate performance with 70% capacity retention when the current increases from 0.10 to 5 C, and promising cycling stability over 83% capacity retention after 900 cycles at 1 C. Moreover, the battery is highly profitable for simplified fabrication and scalable production, which benefits from its symmetrical configuration as well as the solution-processed strategy. This work offers a new paradigm to construct advanced symmetrical energy storage devices.

12.
Soft Matter ; 12(43): 8819-8824, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27722463

RESUMO

This communication describes an innovative photocurable leaky dielectric for electrohydrodynamic patterning (EHDP). Based on the well-designed molecular structure, the material in its liquid state exhibits low viscosity, high homogeneity, and more importantly a leaky dielectric characteristic; meanwhile, UV light irradiation transforms it from a liquid leaky dielectric into a solid perfect dielectric instantaneously via an interfacial reaction. Two typical EHDP processes have confirmed that the beneficial properties of this material help to rapidly fulfill a higher aspect ratio and/or smaller feature size patterning compared to its perfect dielectric counterpart. Therefore, this material provides the potential in accessing high-performance EHDP towards fabricating electrically insulating micro-/nanostructures.

13.
Artigo em Inglês | MEDLINE | ID: mdl-24968668

RESUMO

Dengue fever and dengue hemorrhagic fever are common mosquito-borne diseases in tropical and subtropical regions, and are mainly transmitted by the mosquito Aedes aegypti (Diptera: Culicidae). The international trade of used tires, coupled with its anthropophilic habit, has enabled Ae. aegypti to colonise new areas in China. We used Genetic Algorithum Rule-Set Production (GARP) to predict the putative current distribution of Ae. aegypti based on data on its distribution 20 years ago and compared this predicted distribution with the known current distribution. The putative distribution corresponded perfectly to the existing distribution. We conclude that GARP is a valid method to predict the putative future distribution of Ae. aegypti, and therefore is an important tool for the surveillance of mosquito-borne diseases in general.


Assuntos
Aedes , Algoritmos , Dengue/epidemiologia , Dengue/transmissão , Animais , China/epidemiologia , Insetos Vetores , Modelos Biológicos , Dinâmica Populacional , Prevalência , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA