Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Stat Med ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727205

RESUMO

Longitudinal data from clinical trials are commonly analyzed using mixed models for repeated measures (MMRM) when the time variable is categorical or linear mixed-effects models (ie, random effects model) when the time variable is continuous. In these models, statistical inference is typically based on the absolute difference in the adjusted mean change (for categorical time) or the rate of change (for continuous time). Previously, we proposed a novel approach: modeling the percentage reduction in disease progression associated with the treatment relative to the placebo decline using proportional models. This concept of proportionality provides an innovative and flexible method for simultaneously modeling different cohorts, multivariate endpoints, and jointly modeling continuous and survival endpoints. Through simulated data, we demonstrate the implementation of these models using SAS procedures in both frequentist and Bayesian approaches. Additionally, we introduce a novel method for implementing MMRM models (ie, analysis of response profile) using the nlmixed procedure.

2.
Lancet Neurol ; 23(5): 500-510, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631766

RESUMO

BACKGROUND: In people with genetic forms of Alzheimer's disease, such as in Down syndrome and autosomal-dominant Alzheimer's disease, pathological changes specific to Alzheimer's disease (ie, accumulation of amyloid and tau) occur in the brain at a young age, when comorbidities related to ageing are not present. Studies including these cohorts could, therefore, improve our understanding of the early pathogenesis of Alzheimer's disease and be useful when designing preventive interventions targeted at disease pathology or when planning clinical trials. We compared the magnitude, spatial extent, and temporal ordering of tau spread in people with Down syndrome and autosomal-dominant Alzheimer's disease. METHODS: In this cross-sectional observational study, we included participants (aged ≥25 years) from two cohort studies. First, we collected data from the Dominantly Inherited Alzheimer's Network studies (DIAN-OBS and DIAN-TU), which include carriers of autosomal-dominant Alzheimer's disease genetic mutations and non-carrier familial controls recruited in Australia, Europe, and the USA between 2008 and 2022. Second, we collected data from the Alzheimer Biomarkers Consortium-Down Syndrome study, which includes people with Down syndrome and sibling controls recruited from the UK and USA between 2015 and 2021. Controls from the two studies were combined into a single group of familial controls. All participants had completed structural MRI and tau PET (18F-flortaucipir) imaging. We applied Gaussian mixture modelling to identify regions of high tau PET burden and regions with the earliest changes in tau binding for each cohort separately. We estimated regional tau PET burden as a function of cortical amyloid burden for both cohorts. Finally, we compared the temporal pattern of tau PET burden relative to that of amyloid. FINDINGS: We included 137 people with Down syndrome (mean age 38·5 years [SD 8·2], 74 [54%] male, and 63 [46%] female), 49 individuals with autosomal-dominant Alzheimer's disease (mean age 43·9 years [11·2], 22 [45%] male, and 27 [55%] female), and 85 familial controls, pooled from across both studies (mean age 41·5 years [12·1], 28 [33%] male, and 57 [67%] female), who satisfied the PET quality-control procedure for tau-PET imaging processing. 134 (98%) people with Down syndrome, 44 (90%) with autosomal-dominant Alzheimer's disease, and 77 (91%) controls also completed an amyloid PET scan within 3 years of tau PET imaging. Spatially, tau PET burden was observed most frequently in subcortical and medial temporal regions in people with Down syndrome, and within the medial temporal lobe in people with autosomal-dominant Alzheimer's disease. Across the brain, people with Down syndrome had greater concentrations of tau for a given level of amyloid compared with people with autosomal-dominant Alzheimer's disease. Temporally, increases in tau were more strongly associated with increases in amyloid for people with Down syndrome compared with autosomal-dominant Alzheimer's disease. INTERPRETATION: Although the general progression of amyloid followed by tau is similar for people Down syndrome and people with autosomal-dominant Alzheimer's disease, we found subtle differences in the spatial distribution, timing, and magnitude of the tau burden between these two cohorts. These differences might have important implications; differences in the temporal pattern of tau accumulation might influence the timing of drug administration in clinical trials, whereas differences in the spatial pattern and magnitude of tau burden might affect disease progression. FUNDING: None.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Síndrome de Down , Masculino , Feminino , Humanos , Adulto , Doença de Alzheimer/genética , Estudos Transversais , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Amiloide , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Disfunção Cognitiva/patologia
3.
JAMA Neurol ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683602

RESUMO

Importance: Effects of antiamyloid agents, targeting either fibrillar or soluble monomeric amyloid peptides, on downstream biomarkers in cerebrospinal fluid (CSF) and plasma are largely unknown in dominantly inherited Alzheimer disease (DIAD). Objective: To investigate longitudinal biomarker changes of synaptic dysfunction, neuroinflammation, and neurodegeneration in individuals with DIAD who are receiving antiamyloid treatment. Design, Setting, and Participants: From 2012 to 2019, the Dominantly Inherited Alzheimer Network Trial Unit (DIAN-TU-001) study, a double-blind, placebo-controlled, randomized clinical trial, investigated gantenerumab and solanezumab in DIAD. Carriers of gene variants were assigned 3:1 to either drug or placebo. The present analysis was conducted from April to June 2023. DIAN-TU-001 spans 25 study sites in 7 countries. Biofluids and neuroimaging from carriers of DIAD gene variants in the gantenerumab, solanezumab, and placebo groups were analyzed. Interventions: In 2016, initial dosing of gantenerumab, 225 mg (subcutaneously every 4 weeks) was increased every 8 weeks up to 1200 mg. In 2017, initial dosing of solanezumab, 400 mg (intravenously every 4 weeks) was increased up to 1600 mg every 4 weeks. Main Outcomes and Measures: Longitudinal changes in CSF levels of neurogranin, soluble triggering receptor expressed on myeloid cells 2 (sTREM2), chitinase 3-like 1 protein (YKL-40), glial fibrillary acidic protein (GFAP), neurofilament light protein (NfL), and plasma levels of GFAP and NfL. Results: Of 236 eligible participants screened, 43 were excluded. A total of 142 participants (mean [SD] age, 44 [10] years; 72 female [51%]) were included in the study (gantenerumab, 52 [37%]; solanezumab, 50 [35%]; placebo, 40 [28%]). Relative to placebo, gantenerumab significantly reduced CSF neurogranin level at year 4 (mean [SD] ß = -242.43 [48.04] pg/mL; P < .001); reduced plasma GFAP level at year 1 (mean [SD] ß = -0.02 [0.01] ng/mL; P = .02), year 2 (mean [SD] ß = -0.03 [0.01] ng/mL; P = .002), and year 4 (mean [SD] ß = -0.06 [0.02] ng/mL; P < .001); and increased CSF sTREM2 level at year 2 (mean [SD] ß = 1.12 [0.43] ng/mL; P = .01) and year 4 (mean [SD] ß = 1.06 [0.52] ng/mL; P = .04). Solanezumab significantly increased CSF NfL (log) at year 4 (mean [SD] ß = 0.14 [0.06]; P = .02). Correlation analysis for rates of change found stronger correlations between CSF markers and fluid markers with Pittsburgh compound B positron emission tomography for solanezumab and placebo. Conclusions and Relevance: This randomized clinical trial supports the importance of fibrillar amyloid reduction in multiple AD-related processes of neuroinflammation and neurodegeneration in CSF and plasma in DIAD. Additional studies of antiaggregated amyloid therapies in sporadic AD and DIAD are needed to determine the utility of nonamyloid biomarkers in determining disease modification. Trial Registration: ClinicalTrials.gov Identifier: NCT04623242.

4.
Alzheimers Dement ; 20(4): 2680-2697, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38380882

RESUMO

INTRODUCTION: Amyloidosis, including cerebral amyloid angiopathy, and markers of small vessel disease (SVD) vary across dominantly inherited Alzheimer's disease (DIAD) presenilin-1 (PSEN1) mutation carriers. We investigated how mutation position relative to codon 200 (pre-/postcodon 200) influences these pathologic features and dementia at different stages. METHODS: Individuals from families with known PSEN1 mutations (n = 393) underwent neuroimaging and clinical assessments. We cross-sectionally evaluated regional Pittsburgh compound B-positron emission tomography uptake, magnetic resonance imaging markers of SVD (diffusion tensor imaging-based white matter injury, white matter hyperintensity volumes, and microhemorrhages), and cognition. RESULTS: Postcodon 200 carriers had lower amyloid burden in all regions but worse markers of SVD and worse Clinical Dementia Rating® scores compared to precodon 200 carriers as a function of estimated years to symptom onset. Markers of SVD partially mediated the mutation position effects on clinical measures. DISCUSSION: We demonstrated the genotypic variability behind spatiotemporal amyloidosis, SVD, and clinical presentation in DIAD, which may inform patient prognosis and clinical trials. HIGHLIGHTS: Mutation position influences Aß burden, SVD, and dementia. PSEN1 pre-200 group had stronger associations between Aß burden and disease stage. PSEN1 post-200 group had stronger associations between SVD markers and disease stage. PSEN1 post-200 group had worse dementia score than pre-200 in late disease stage. Diffusion tensor imaging-based SVD markers mediated mutation position effects on dementia in the late stage.


Assuntos
Doença de Alzheimer , Amiloidose , Doenças de Pequenos Vasos Cerebrais , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/genética , Doenças de Pequenos Vasos Cerebrais/complicações , Imagem de Tensor de Difusão , Imageamento por Ressonância Magnética , Mutação/genética , Presenilina-1/genética
5.
Alzheimers Dement ; 20(4): 2698-2706, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38400532

RESUMO

INTRODUCTION: Increasing evidence suggests that amyloid reduction could serve as a plausible surrogate endpoint for clinical and cognitive efficacy. The double-blind phase 3 DIAN-TU-001 trial tested clinical and cognitive declines with increasing doses of solanezumab or gantenerumab. METHODS: We used latent class (LC) analysis on data from the Dominantly Inherited Alzheimer Network Trials Unit 001 trial to test amyloid positron emission tomography (PET) reduction as a potential surrogate biomarker. RESULTS: LC analysis categorized participants into three classes: amyloid no change, amyloid reduction, and amyloid growth, based on longitudinal amyloid Pittsburgh compound B PET standardized uptake value ratio data. The amyloid-no-change class was at an earlier disease stage for amyloid amounts and dementia. Despite similar baseline characteristics, the amyloid-reduction class exhibited reductions in the annual decline rates compared to the amyloid-growth class across multiple biomarker, clinical, and cognitive outcomes. DISCUSSION: LC analysis indicates that amyloid reduction is associated with improved clinical outcomes and supports its use as a surrogate biomarker in clinical trials. HIGHLIGHTS: We used latent class (LC) analysis to test amyloid reduction as a surrogate biomarker. Despite similar baseline characteristics, the amyloid-reduction class exhibited remarkably better outcomes compared to the amyloid-growth class across multiple measures. LC analysis proves valuable in testing amyloid reduction as a surrogate biomarker in clinical trials lacking significant treatment effects.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Amiloide , Peptídeos beta-Amiloides , Proteínas Amiloidogênicas , Biomarcadores , Método Duplo-Cego , Análise de Classes Latentes , Tomografia por Emissão de Pósitrons/métodos
6.
Brain Commun ; 5(6): fcad280, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37942088

RESUMO

Approximately 5% of Alzheimer's disease cases have an early age at onset (<65 years), with 5-10% of these cases attributed to dominantly inherited mutations and the remainder considered as sporadic. The extent to which dominantly inherited and sporadic early-onset Alzheimer's disease overlap is unknown. In this study, we explored the clinical, cognitive and biomarker profiles of early-onset Alzheimer's disease, focusing on commonalities and distinctions between dominantly inherited and sporadic cases. Our analysis included 117 participants with dominantly inherited Alzheimer's disease enrolled in the Dominantly Inherited Alzheimer Network and 118 individuals with sporadic early-onset Alzheimer's disease enrolled at the University of California San Francisco Alzheimer's Disease Research Center. Baseline differences in clinical and biomarker profiles between both groups were compared using t-tests. Differences in the rates of decline were compared using linear mixed-effects models. Individuals with dominantly inherited Alzheimer's disease exhibited an earlier age-at-symptom onset compared with the sporadic group [43.4 (SD ± 8.5) years versus 54.8 (SD ± 5.0) years, respectively, P < 0.001]. Sporadic cases showed a higher frequency of atypical clinical presentations relative to dominantly inherited (56.8% versus 8.5%, respectively) and a higher frequency of APOE-ε4 (50.0% versus 28.2%, P = 0.001). Compared with sporadic early onset, motor manifestations were higher in the dominantly inherited cohort [32.5% versus 16.9% at baseline (P = 0.006) and 46.1% versus 25.4% at last visit (P = 0.001)]. At baseline, the sporadic early-onset group performed worse on category fluency (P < 0.001), Trail Making Test Part B (P < 0.001) and digit span (P < 0.001). Longitudinally, both groups demonstrated similar rates of cognitive and functional decline in the early stages. After 10 years from symptom onset, dominantly inherited participants experienced a greater decline as measured by Clinical Dementia Rating Sum of Boxes [3.63 versus 1.82 points (P = 0.035)]. CSF amyloid beta-42 levels were comparable [244 (SD ± 39.3) pg/ml dominantly inherited versus 296 (SD ± 24.8) pg/ml sporadic early onset, P = 0.06]. CSF phosphorylated tau at threonine 181 levels were higher in the dominantly inherited Alzheimer's disease cohort (87.3 versus 59.7 pg/ml, P = 0.005), but no significant differences were found for t-tau levels (P = 0.35). In summary, sporadic and inherited Alzheimer's disease differed in baseline profiles; sporadic early onset is best distinguished from dominantly inherited by later age at onset, high frequency of atypical clinical presentations and worse executive performance at baseline. Despite these differences, shared pathways in longitudinal clinical decline and CSF biomarkers suggest potential common therapeutic targets for both populations, offering valuable insights for future research and clinical trial design.

7.
Hum Brain Mapp ; 44(18): 6375-6387, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37867465

RESUMO

Carriers of mutations responsible for dominantly inherited Alzheimer disease provide a unique opportunity to study potential imaging biomarkers. Biomarkers based on routinely acquired clinical MR images, could supplement the extant invasive or logistically challenging) biomarker studies. We used 1104 longitudinal MR, 324 amyloid beta, and 87 tau positron emission tomography imaging sessions from 525 participants enrolled in the Dominantly Inherited Alzheimer Network Observational Study to extract novel imaging metrics representing the mean (µ) and standard deviation (σ) of standardized image intensities of T1-weighted and Fluid attenuated inversion recovery (FLAIR) MR scans. There was an exponential decrease in FLAIR-µ in mutation carriers and an increase in FLAIR and T1 signal heterogeneity (T1-σ and FLAIR-σ) as participants approached the symptom onset in both supramarginal, the right postcentral and right superior temporal gyri as well as both caudate nuclei, putamina, thalami, and amygdalae. After controlling for the effect of regional atrophy, FLAIR-µ decreased and T1-σ and FLAIR-σ increased with increasing amyloid beta and tau deposition in numerous cortical regions. In symptomatic mutation carriers and independent of the effect of regional atrophy, tau pathology demonstrated a stronger relationship with image intensity metrics, compared with amyloid pathology. We propose novel MR imaging intensity-based metrics using standard clinical T1 and FLAIR images which strongly associates with the progression of pathology in dominantly inherited Alzheimer disease. We suggest that tau pathology may be a key driver of the observed changes in this cohort of patients.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/complicações , Peptídeos beta-Amiloides , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons , Biomarcadores , Atrofia , Proteínas tau
8.
RSC Adv ; 13(35): 24237-24249, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37583665

RESUMO

Biochar-modified TiO2 (C/TiO2) was prepared by a sol-gel method in this study to improve the photocatalytic capacity for ammonia-nitrogen (NH3-N) removal from aqueous solutions. The results showed that biochar was successfully modified on TiO2 and helped improve its photocatalytic performance for pollutant degradation. The removal capacity of ammonia-nitrogen on the synthesized photocatalyst performed well at pH 10 with 1 g L-1 C/TiO2 under both 60 (12.25 mg g-1) and 120 min (16.31 mg g-1) irradiation (xenon lamp, AM1.5, 25 A). Characterization of C/TiO2 through scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectrometry (FT-IR) analyses showed the successful introduction of biochar on TiO2. SEM-EDS and BET analyses displayed that C/TiO2 had a larger surface area and more pores than the raw materials. XRD spectroscopy illustrated that C/TiO2 had typical characteristic peaks of anatase-TiO2 and presented a good photocatalytic degradation performance. It was confirmed from XPS and FT-IR analyses that -COOH groups were present in C/TiO2 and originated from biochar modification, and these enhanced the photocatalytic performance. Through radical quenching experiments, it was found that superoxide radicals (˙O2-) played a dominant role in NH3-N photocatalytic reactions with hydroxyl radicals (˙OH) and valence band holes (h+) playing a synergistic role. N2 was the main degradation product after 6 h NH3-N photocatalytic degradation, which was much larger than NO3-/NO2- (both almost undetected) and NH3 (ca. 2 times lower than N2). The new composite C/TiO2 has potential for ammonia-nitrogen degradation in wastewater treatment and favorable for treating sewage sludge.

9.
Eur J Nucl Med Mol Imaging ; 50(9): 2669-2682, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37017737

RESUMO

PURPOSE: Pittsburgh Compound-B (11C-PiB) and 18F-florbetapir are amyloid-ß (Aß) positron emission tomography (PET) radiotracers that have been used as endpoints in Alzheimer's disease (AD) clinical trials to evaluate the efficacy of anti-Aß monoclonal antibodies. However, comparing drug effects between and within trials may become complicated if different Aß radiotracers were used. To study the consequences of using different Aß radiotracers to measure Aß clearance, we performed a head-to-head comparison of 11C-PiB and 18F-florbetapir in a Phase 2/3 clinical trial of anti-Aß monoclonal antibodies. METHODS: Sixty-six mutation-positive participants enrolled in the gantenerumab and placebo arms of the first Dominantly Inherited Alzheimer Network Trials Unit clinical trial (DIAN-TU-001) underwent both 11C-PiB and 18F-florbetapir PET imaging at baseline and during at least one follow-up visit. For each PET scan, regional standardized uptake value ratios (SUVRs), regional Centiloids, a global cortical SUVR, and a global cortical Centiloid value were calculated. Longitudinal changes in SUVRs and Centiloids were estimated using linear mixed models. Differences in longitudinal change between PET radiotracers and between drug arms were estimated using paired and Welch two sample t-tests, respectively. Simulated clinical trials were conducted to evaluate the consequences of some research sites using 11C-PiB while other sites use 18F-florbetapir for Aß PET imaging. RESULTS: In the placebo arm, the absolute rate of longitudinal change measured by global cortical 11C-PiB SUVRs did not differ from that of global cortical 18F-florbetapir SUVRs. In the gantenerumab arm, global cortical 11C-PiB SUVRs decreased more rapidly than global cortical 18F-florbetapir SUVRs. Drug effects were statistically significant across both Aß radiotracers. In contrast, the rates of longitudinal change measured in global cortical Centiloids did not differ between Aß radiotracers in either the placebo or gantenerumab arms, and drug effects remained statistically significant. Regional analyses largely recapitulated these global cortical analyses. Across simulated clinical trials, type I error was higher in trials where both Aß radiotracers were used versus trials where only one Aß radiotracer was used. Power was lower in trials where 18F-florbetapir was primarily used versus trials where 11C-PiB was primarily used. CONCLUSION: Gantenerumab treatment induces longitudinal changes in Aß PET, and the absolute rates of these longitudinal changes differ significantly between Aß radiotracers. These differences were not seen in the placebo arm, suggesting that Aß-clearing treatments may pose unique challenges when attempting to compare longitudinal results across different Aß radiotracers. Our results suggest converting Aß PET SUVR measurements to Centiloids (both globally and regionally) can harmonize these differences without losing sensitivity to drug effects. Nonetheless, until consensus is achieved on how to harmonize drug effects across radiotracers, and since using multiple radiotracers in the same trial may increase type I error, multisite studies should consider potential variability due to different radiotracers when interpreting Aß PET biomarker data and, if feasible, use a single radiotracer for the best results. TRIAL REGISTRATION: ClinicalTrials.gov NCT01760005. Registered 31 December 2012. Retrospectively registered.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Compostos de Anilina , Etilenoglicóis , Encéfalo/metabolismo
10.
RSC Adv ; 12(49): 31966-31975, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36380963

RESUMO

Titanium dioxide modified with biochar (Ti-C) was prepared by a sol-gel method for the degradation of humic acid (HA) in aqueous solutions. Under identical conditions, Ti-C contained less TiO2 and showed better HA degradation capacity than that of pure TiO2, and had ca. 20% higher HA removal rate than that of simple Ti-C adsorption. Photocatalytic degradation of HA with Ti-C had an efficient removal rate of 50% at pH = 3, which was ca. 28% higher than that at pH = 7 (HA = 10 mg L-1), while a higher reaction temperature, longer lighting time and larger Ti-C dosage were conducive to HA photocatalytic degradation. SEM micrographs showed that Ti-C had a much rougher surface than the original biochar, and EDS results of Ti-C indicated that its carbon content increased up to 26.2% after biochar doping. Ti-C had an evident anatase structure and a typical SiO2 structure, as revealed by XRD analysis. TOC and GC-MS analysis indicated that HA was effectively degraded and transformed into harmless carbon dioxide. Superoxide radicals were the main active radicals produced for the efficient degradation of humic acid, while hydroxyl radicals and electron-holes also contributed to HA decomposition in Ti-C systems. This work is expected to be helpful for the innovative preparation of titanium dioxide as a low-cost photocatalyst for the degradation of humic acid in water.

11.
Alzheimers Dement (Amst) ; 14(1): e12367, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36348972

RESUMO

Introduction: While the Dominantly Inherited Alzheimer Network Trials Unit (DIAN-TU) was ongoing, external data suggested higher doses were needed to achieve targeted effects; therefore, doses of gantenerumab were increased 5-fold, and solanezumab was increased 4-fold. We evaluated to what extent mid-trial dose increases produced a dose-dependent treatment effect. Methods: Using generalized linear mixed effects (LME) models, we estimated the annual low- and high-dose treatment effects in clinical, cognitive, and biomarker outcomes. Results: Both gantenerumab and solanezumab demonstrated dose-dependent treatment effects (significant for gantenerumab, non-significant for solanezumab) in their respective target amyloid biomarkers (Pittsburgh compound B positron emission tomography standardized uptake value ratio and cerebrospinal fluid amyloid beta 42), with gantenerumab demonstrating additional treatment effects in some downstream biomarkers. No dose-dependent treatment effects were observed in clinical or cognitive outcomes. Conclusions: Mid-trial dose escalation can be implemented as a remedy for an insufficient initial dose and can be more cost effective and less burdensome to participants than starting a new trial with higher doses, especially in rare diseases. Highlights: We evaluated the dose-dependent treatment effect of two different amyloid-specific immunotherapies.Dose-dependent treatment effects were observed in some biomarkers.No dose-dependent treatment effects were observed in clinical/cognitive outcomes, potentially due to the fact that the modified study may not have been powered to detect such treatment effects in symptomatic subjects at a mild stage of disease exposed to high (or maximal) doses of medication for prolonged durations.

12.
Front Aging Neurosci ; 14: 935279, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238934

RESUMO

Objectives: Neuroinflammation signaling has been identified as an important hallmark of Alzheimer's disease (AD) in addition to amyloid ß plaques (Aß) and neurofibrillary tangles (NFTs). However, the molecular mechanisms and biological processes of neuroinflammation remain unclear and have not well delineated using transcriptomics data available. Our objectives are to uncover the core neuroinflammation signaling pathways in AD using integrative network analysis on the transcriptomics data. Materials and methods: From a novel perspective, i.e., investigating weakly activated molecular signals (rather than the strongly activated molecular signals), we developed integrative and systems biology network analysis to uncover potential core neuroinflammation signaling targets and pathways in AD using the two large-scale transcriptomics datasets, i.e., Mayo Clinic (77 controls and 81 AD samples) and ROSMAP (97 controls and 260 AD samples). Results: Our analysis identified interesting core neuroinflammation signaling pathways, which are not systematically reported in the previous studies of AD. Specifically, we identified 7 categories of signaling pathways implicated on AD and related to virus infection: immune response, x-core signaling, apoptosis, lipid dysfunctional, biosynthesis and metabolism, and mineral absorption signaling pathways. More interestingly, most of the genes in the virus infection, immune response, and x-core signaling pathways are associated with inflammation molecular functions. The x-core signaling pathways were defined as a group of 9 signaling proteins: MAPK, Rap1, NF-kappa B, HIF-1, PI3K-Akt, Wnt, TGF-beta, Hippo, and TNF, which indicated the core neuroinflammation signaling pathways responding to the low-level and weakly activated inflammation and hypoxia and leading to the chronic neurodegeneration. It is interesting to investigate the detailed signaling cascades of these weakly activated neuroinflammation signaling pathways causing neurodegeneration in a chronic process, and consequently uncover novel therapeutic targets for effective AD treatment and prevention. Conclusions: The potential core neuroinflammation and associated signaling targets and pathways were identified using integrative network analysis on two large-scale transcriptomics datasets of AD.

13.
Ann Neurol ; 92(5): 729-744, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36151869

RESUMO

OBJECTIVE: To determine the characteristics of participants with amyloid-related imaging abnormalities (ARIA) in a trial of gantenerumab or solanezumab in dominantly inherited Alzheimer disease (DIAD). METHODS: 142 DIAD mutation carriers received either gantenerumab SC (n = 52), solanezumab IV (n = 50), or placebo (n = 40). Participants underwent assessments with the Clinical Dementia Rating® (CDR®), neuropsychological testing, CSF biomarkers, ß-amyloid positron emission tomography (PET), and magnetic resonance imaging (MRI) to monitor ARIA. Cross-sectional and longitudinal analyses evaluated potential ARIA-related risk factors. RESULTS: Eleven participants developed ARIA-E, including 3 with mild symptoms. No ARIA-E was reported under solanezumab while gantenerumab was associated with ARIA-E compared to placebo (odds ratio [OR] = 9.1, confidence interval [CI][1.2, 412.3]; p = 0.021). Under gantenerumab, APOE-ɛ4 carriers were more likely to develop ARIA-E (OR = 5.0, CI[1.0, 30.4]; p = 0.055), as were individuals with microhemorrhage at baseline (OR = 13.7, CI[1.2, 163.2]; p = 0.039). No ARIA-E was observed at the initial 225 mg/month gantenerumab dose, and most cases were observed at doses >675 mg. At first ARIA-E occurrence, all ARIA-E participants were amyloid-PET+, 60% were CDR >0, 60% were past their estimated year to symptom onset, and 60% had also incident ARIA-H. Most ARIA-E radiologically resolved after dose adjustment and developing ARIA-E did not significantly increase odds of trial discontinuation. ARIA-E was more frequently observed in the occipital lobe (90%). ARIA-E severity was associated with age at time of ARIA-E. INTERPRETATION: In DIAD, solanezumab was not associated with ARIA. Gantenerumab dose over 225 mg increased ARIA-E risk, with additional risk for individuals APOE-ɛ4(+) or with microhemorrhage. ARIA-E was reversible on MRI in most cases, generally asymptomatic, without additional risk for trial discontinuation. ANN NEUROL 2022;92:729-744.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Estudos Transversais , Peptídeos beta-Amiloides , Amiloide , Biomarcadores , Apolipoproteínas E
14.
Brain ; 145(12): 4459-4473, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-35925685

RESUMO

The temporal evolutions and relative orderings of Alzheimer disease biomarkers, including CSF amyloid-ß42 (Aß42), Aß40, total tau (Tau) and phosphorylated tau181 (pTau181), standardized uptake value ratio (SUVR) from the molecular imaging of cerebral fibrillar amyloid-ß with PET using the 11C-Pittsburgh Compound-B (PiB), MRI-based hippocampal volume and cortical thickness and cognition have been hypothesized but not yet fully tested with longitudinal data for all major biomarker modalities among cognitively normal individuals across the adult lifespan starting from 18 years. By leveraging a large harmonized database from 8 biomarker studies with longitudinal data from 2609 participants in cognition, 873 in MRI biomarkers, 519 in PET PiB imaging and 475 in CSF biomarkers for a median follow-up of 5-6 years, we estimated the longitudinal trajectories of all major Alzheimer disease biomarkers as functions of baseline age that spanned from 18 to 103 years, located the baseline age window at which the longitudinal rates of change accelerated and further examined possible modifying effects of apolipoprotein E (APOE) genotype. We observed that participants 18-45 years at baseline exhibited learning effects on cognition and unexpected directions of change on CSF and PiB biomarkers. The earliest acceleration of longitudinal change occurred for CSF Aß42 and Aß42/Aß40 ratio (with an increase) and for Tau, and pTau181 (with a decrease) at the next baseline age interval of 45-50 years, followed by an accelerated increase for PiB SUVR at the baseline age of 50-55 years and an accelerated decrease for hippocampal volume at the baseline age of 55-60 years and finally by an accelerated decline for cortical thickness and cognition at the baseline age of 65-70 years. Another acceleration in the rate of change occurred at the baseline age of 65-70 years for Aß42/Aß40 ratio, Tau, pTau181, PiB SUVR and hippocampal volume. Accelerated declines in hippocampal volume and cognition continued after 70 years. For participants 18-45 years at baseline, significant increases in Aß42 and Aß42/Aß40 ratio and decreases in PiB SUVR occurred in APOE ɛ4 non-carriers but not carriers. After age 45 years, APOE ɛ4 carriers had greater magnitudes than non-carriers in the rates of change for all CSF biomarkers, PiB SUVR and cognition. Our results characterize the temporal evolutions and relative orderings of Alzheimer disease biomarkers across the adult lifespan and the modification effect of APOE ɛ4. These findings may better inform the design of prevention trials on Alzheimer disease.


Assuntos
Doença de Alzheimer , Humanos , Adulto , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Longevidade , Proteínas tau , Tomografia por Emissão de Pósitrons , Peptídeos beta-Amiloides , Biomarcadores , Apolipoproteínas E/genética , Fragmentos de Peptídeos , Estudos Longitudinais
15.
Front Aging Neurosci ; 14: 883131, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783127

RESUMO

Demonstrating a slowing in the rate of cognitive decline is a common outcome measure in clinical trials in Alzheimer's disease (AD). Selection of cognitive endpoints typically includes modeling candidate outcome measures in the many, richly phenotyped observational cohort studies available. An important part of choosing cognitive endpoints is a consideration of improvements in performance due to repeated cognitive testing (termed "practice effects"). As primary and secondary AD prevention trials are comprised predominantly of cognitively unimpaired participants, practice effects may be substantial and may have considerable impact on detecting cognitive change. The extent to which practice effects in AD prevention trials are similar to those from observational studies and how these potential differences impact trials is unknown. In the current study, we analyzed data from the recently completed DIAN-TU-001 clinical trial (TU) and the associated DIAN-Observational (OBS) study. Results indicated that asymptomatic mutation carriers in the TU exhibited persistent practice effects on several key outcomes spanning the entire trial duration. Critically, these practice related improvements were larger on certain tests in the TU relative to matched participants from the OBS study. Our results suggest that the magnitude of practice effects may not be captured by modeling potential endpoints in observational studies where assessments are typically less frequent and drug expectancy effects are absent. Using alternate instrument forms (represented in our study by computerized tasks) may partly mitigate practice effects in clinical trials but incorporating practice effects as outcomes may also be viable. Thus, investigators must carefully consider practice effects (either by minimizing them or modeling them directly) when designing cognitive endpoint AD prevention trials by utilizing trial data with similar assessment frequencies.

16.
BMC Med Res Methodol ; 22(1): 201, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869438

RESUMO

BACKGROUND: In recent years there is increasing interest in modeling the effect of early longitudinal biomarker data on future time-to-event or other outcomes. Sometimes investigators are also interested in knowing whether the variability of biomarkers is independently predictive of clinical outcomes. This question in most applications is addressed via a two-stage approach where summary statistics such as variance are calculated in the first stage and then used in models as covariates to predict clinical outcome in the second stage. The objective of this study is to compare the relative performance of various methods in estimating the effect of biomarker variability. METHODS: A joint model and 4 different two-stage approaches (naïve, landmark analysis, time-dependent Cox model, and regression calibration) were illustrated using data from a large multi-center randomized phase III trial, the Ocular Hypertension Treatment Study (OHTS), regarding the association between the variability of intraocular pressure (IOP) and the development of primary open-angle glaucoma (POAG). The model performance was also evaluated in terms of bias using simulated data from the joint model of longitudinal IOP and time to POAG. The parameters for simulation were chosen after OHTS data, and the association between longitudinal and survival data was introduced via underlying, unobserved, and error-free parameters including subject-specific variance. RESULTS: In the OHTS data, joint modeling and two-stage methods reached consistent conclusion that IOP variability showed no significant association with the risk of POAG. In the simulated data with no association between IOP variability and time-to-POAG, all the two-stage methods (except the naïve approach) provided a reliable estimation. When a moderate effect of IOP variability on POAG was imposed, all the two-stage methods underestimated the true association as compared with the joint modeling while the model-based two-stage method (regression calibration) resulted in the least bias. CONCLUSION: Regression calibration and joint modelling are the preferred methods in assessing the effect of biomarker variability. Two-stage methods with sample-based measures should be used with caution unless there exists a relatively long series of longitudinal measurements and/or strong effect size (NCT00000125).


Assuntos
Glaucoma de Ângulo Aberto , Hipertensão Ocular , Biomarcadores , Ensaios Clínicos Fase III como Assunto , Humanos , Pressão Intraocular , Estudos Multicêntricos como Assunto , Prognóstico , Ensaios Clínicos Controlados Aleatórios como Assunto , Fatores de Risco , Tonometria Ocular , Campos Visuais
17.
J Appl Stat ; 49(9): 2246-2270, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755087

RESUMO

Bivariate correlation coefficients (BCCs) are often calculated to gauge the relationship between two variables in medical research. In a family-type clustered design where multiple participants from same units/families are enrolled, BCCs can be defined and estimated at various hierarchical levels (subject level, family level and marginal BCC). Heterogeneity usually exists between subject groups and, as a result, subject level BCCs may differ between subject groups. In the framework of bivariate linear mixed effects modeling, we define and estimate BCCs at various hierarchical levels in a family-type clustered design, accommodating subject group heterogeneity. Simplified and modified asymptotic confidence intervals are constructed to the BCC differences and Wald type tests are conducted. A real-world family-type clustered study of Alzheimer disease (AD) is analyzed to estimate and compare BCCs among well-established AD biomarkers between mutation carriers and non-carriers in autosomal dominant AD asymptomatic individuals. Extensive simulation studies are conducted across a wide range of scenarios to evaluate the performance of the proposed estimators and the type-I error rate and power of the proposed statistical tests. Abbreviations: BCC: bivariate correlation coefficient; BLM: bivariate linear mixed effects model; CI: confidence interval; AD: Alzheimer's disease; DIAN: The Dominantly Inherited Alzheimer Network; SA: simple asymptotic; MA: modified asymptotic.

18.
Alzheimers Dement (N Y) ; 8(1): e12286, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35415211

RESUMO

Introduction: Clinical trials for sporadic Alzheimer's disease generally use mixed models for repeated measures (MMRM) or, to a lesser degree, constrained longitudinal data analysis models (cLDA) as the analysis model with time since baseline as a categorical variable. Inferences using MMRM/cLDA focus on the between-group contrast at the pre-determined, end-of-study assessments, thus are less efficient (eg, less power). Methods: The proportional cLDA (PcLDA) and proportional MMRM (pMMRM) with time as a categorical variable are proposed to use all the post-baseline data without the linearity assumption on disease progression. Results: Compared with the traditional cLDA/MMRM models, PcLDA or pMMRM lead to greater gain in power (up to 20% to 30%) while maintaining type I error control. Discussion: The PcLDA framework offers a variety of possibilities to model longitudinal data such as proportional MMRM (pMMRM) and two-part pMMRM which can model heterogeneous cohorts more efficiently and model co-primary endpoints simultaneously.

19.
Neurology ; 97(18): e1823-e1834, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34504028

RESUMO

BACKGROUND AND OBJECTIVES: To predict when cognitively normal individuals with brain amyloidosis will develop symptoms of Alzheimer disease (AD). METHODS: Brain amyloid burden was measured by amyloid PET with Pittsburgh compound B. The mean cortical standardized uptake value ratio (SUVR) was transformed into a timescale with the use of longitudinal data. RESULTS: Amyloid accumulation was evaluated in 236 individuals who underwent >1 amyloid PET scan. The average age was 66.5 ± 9.2 years, and 12 individuals (5%) had cognitive impairment at their baseline amyloid PET scan. A tipping point in amyloid accumulation was identified at a low level of amyloid burden (SUVR 1.2), after which nearly all individuals accumulated amyloid at a relatively consistent rate until reaching a high level of amyloid burden (SUVR 3.0). The average time between levels of amyloid burden was used to estimate the age at which an individual reached SUVR 1.2. Longitudinal clinical diagnoses for 180 individuals were aligned by the estimated age at SUVR 1.2. In the 22 individuals who progressed from cognitively normal to a typical AD dementia syndrome, the estimated age at which an individual reached SUVR 1.2 predicted the age at symptom onset (R 2 = 0.54, p < 0.0001, root mean square error [RMSE] 4.5 years); the model was more accurate after exclusion of 3 likely misdiagnoses (R 2 = 0.84, p < 0.0001, RMSE 2.8 years). CONCLUSION: The age at symptom onset in sporadic AD is strongly correlated with the age at which an individual reaches a tipping point in amyloid accumulation.


Assuntos
Doença de Alzheimer , Amiloidose , Disfunção Cognitiva , Idoso , Doença de Alzheimer/diagnóstico por imagem , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Amiloidose/diagnóstico por imagem , Compostos de Anilina , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Humanos , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons
20.
bioRxiv ; 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34494019

RESUMO

Neuro-inflammation signaling has been identified as an important hallmark of Alzheimer's disease (AD) in addition to amyloid ß plaques (Aß) and neurofibrillary tangles (NFTs). However, our knowledge of neuro-inflammation is very limited; and the core signaling pathways associated with neuro-inflammation are missing. From a novel perspective, i.e., investigating weakly activated molecular signals (rather than the strongly activated molecular signals), in this study, we uncovered the core neuro-inflammation signaling pathways in AD. Our novel hypothesis is that weakly activated neuro-inflammation signaling pathways can cause neuro-degeneration in a chronic process; whereas, strongly activated neuro-inflammation often cause acute disease progression like in COVID-19. Using the two large-scale genomics datasets, i.e., Mayo Clinic (77 control and 81 AD samples) and RosMap (97 control and 260 AD samples), our analysis identified 7 categories of signaling pathways implicated on AD and related to virus infection: immune response, x-core signaling, apoptosis, lipid dysfunctional, biosynthesis and metabolism, and mineral absorption signaling pathways. More interestingly, most of genes in the virus infection, immune response and x-core signaling pathways, are associated with inflammation molecular functions. Specifically, the x-core signaling pathways were defined as a group of 9 signaling proteins: MAPK, Rap1, NF-kappa B, HIF-1, PI3K-Akt, Wnt, TGF-beta, Hippo and TNF, which indicated the core neuro-inflammation signaling pathways responding to the low-level and weakly activated inflammation and hypoxia, and leading to the chronic neuro-degeneration. The core neuro-inflammation signaling pathways can be used as novel therapeutic targets for effective AD treatment and prevention.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA