Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
J Clin Invest ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39325536

RESUMO

Activated mTORC2/AKT signaling plays a role in hepatocellular carcinoma (HCC). Research has shown that TSC/mTORC1 and FOXO1 are distinct downstream effectors of AKT signaling in liver regeneration and metabolism. However, the mechanisms by which these pathways mediate mTORC2/AKT activation in HCC are not yet fully understood. Amplification and activation of c-MYC is a key molecular event in HCC. In this study, we explored the roles of TSC/mTORC1 and FOXO1 as downstream effectors of mTORC2/AKT1 in c-MYC-induced hepatocarcinogenesis. Using various genetic approaches in mice, we found that manipulating the FOXO pathway had minimal impact on c-MYC-induced HCC. In contrast, loss of mTORC2 inhibited c-MYC-induced HCC, an effect that was completely reversed by ablating TSC2, which activated mTORC1. Additionally, we discovered that p70/RPS6 and 4EBP1/eIF4E act downstream of mTORC1, regulating distinct molecular pathways. Notably, the 4EBP1/eIF4E cascade is crucial for cell proliferation and glycolysis in c-MYC-induced HCC. We also identified centromere protein M (CENPM) as a downstream target of the TSC2/mTORC1 pathway in c-MYC-driven hepatocarcinogenesis, and its ablation entirely inhibited c-MYC-dependent HCC formation. Our findings demonstrate that the TSC/mTORC1/CENPM pathway, rather than the FOXO cascade, is the primary signaling pathway regulating c-MYC-driven hepatocarcinogenesis. Targeting CENPM holds therapeutic potential for treating c-MYC-driven HCC.

2.
Heliyon ; 10(18): e37403, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39309864

RESUMO

Background: Hepatocellular carcinoma (HCC) is among the most prevalent digestive system malignancies and is associated with a poor prognosis. Necroptosis, a form of regulated death mediated by death receptors, exhibits characteristics of both necrosis and apoptosis. Long non-coding RNAs (lncRNAs) have been identified as crucial regulators in tumor necroptosis. This study aims to identify the necroptosis-related lncRNAs (np-lncRNA) in HCC and investigate their relationships with prognosis. Method: The RNA-sequencing data, along with clinicopathological and survival information of HCC patients were sourced from The Cancer Genome Atlas (TCGA) database. The np-lncRNAs were analyzed to assess their potential in predicting HCC prognosis. Prognostic signatures related to necroptosis were constructed using stepwise multivariate Cox regression analysis. The prognosis of patients was compared using Kaplan-Meier (KM) analysis. The accuracy of the prognostic signature was evaluated using Receiver operating characteristic (ROC) analysis and decision curve analysis (DCA). Quantitative real-time polymerase chain reaction(qPCR) was employed to validate the lncRNAs expression levels of lncRNAs among samples from an independent cohort. Results: The np-lncRNAs ZFPM2-AS1, AC099850.3, BACE1-AS, KDM4A-AS1 and MKLN1-AS were identified as potential prognostic biomarkers. The prognostic signature constructed from these np-lncRNAs achieved an Area Under the Curve (AUC) of 0.773. Based on the risk score derived from the signature, patients were divided into two groups, with the high-risk group exhibiting poorer overall survival. Gene Set Enrichment Analysis (GSEA) revealed significantly different between the low risk and high risk groups in tumor-related pathways (such as mTOR, MAPK and p53 signaling pathways) and immune-related functions (like T cell receptor signaling pathway and natural killer cell mediated cytotoxicity). The increased expression of np-lncRNAs was confirmed in another independent HCC cohort. Conclusions: This signature offers a dependable method for forecasting the prognosis of HCC patients. Our findings indicate a subset of np-lncRNA biomarkers that could be utilized for prognosis prediction and personalized treatment strategies of HCC patients.

3.
Transl Cancer Res ; 13(6): 3156-3178, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38988928

RESUMO

Background and Objective: Hepatocellular carcinoma (HCC) is a highly heterogeneous and aggressive tumor. In recent years, the incidence of HCC has been increasing worldwide. Despite notable advancements in treatment methodologies, the prognosis of HCC patients remains unsatisfactory. ErbB family proteins play important roles in the occurrence, progression, and metastasis of HCC, and their abnormal expression is often closely associated with poor patient prognosis. This article sought to investigate the current status and research progress of ErbB family protein targeted therapy in HCC in recent years to provide a reference for basic research and clinical treatment. Methods: We performed a comprehensive, narrative review of the latest literature to define the current progress of ErbB family receptors in HCC in both the pre-clinical and clinical arenas. Key Content and Findings: The ErbB family belongs to the tyrosine kinase (TK) receptor family that comprises four members. These members are closely associated with proliferation, cell cycle regulation, and migration during HCC development through multiple signaling pathways. ErbB-targeted therapy has shown tremendous potential and prospects in the treatment of HCC. Conclusions: Through in-depth research and the application of ErbB-targeted therapy, broader avenues will be opened for the treatment of HCC and other tumors, leading to more personalized and precise treatment approaches.

4.
Front Pharmacol ; 15: 1383274, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983918

RESUMO

The most prevalent primary brain tumors in adults are gliomas. In addition to insufficient therapeutic alternatives, gliomas are fatal mostly due to the rapid proliferation and continuous infiltration of tumor cells into the surrounding healthy brain tissue. According to a growing body of research, aerobic glycolysis, or the Warburg effect, promotes glioma development because gliomas are heterogeneous cancers that undergo metabolic reprogramming. Therefore, addressing the Warburg effect might be a useful therapeutic strategy for treating cancer. Lactate plays a critical role in reprogramming energy metabolism, allowing cells to rapidly access large amounts of energy. Lactate, a byproduct of glycolysis, is therefore present in rapidly proliferating cells and tumors. In addition to the protumorigenesis pathways of lactate synthesis, circulation, and consumption, lactate-induced lactylation has been identified in recent investigations. Lactate plays crucial roles in modulating immune processes, maintaining homeostasis, and promoting metabolic reprogramming in tumors, which are processes regulated by the lactate-induced lactylation of the lysine residues of histones. In this paper, we discuss the discovery and effects of lactylation, review the published studies on how protein lactylation influences cancer growth and further explore novel treatment approaches to achieve improved antitumor effects by targeting lactylation. These findings could lead to a new approach and guidance for improving the prognosis of patients with gliomas.

5.
Curr Opin Insect Sci ; 64: 101223, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908821

RESUMO

Biting flies, including stable flies and horn flies, are considered important pests of livestock, companion animals, and humans by inflicting painful bites and interrupting normal animal behavior and human recreational/outdoor activities. It is estimated that they cause an annual loss of over 3 billion dollars in the US livestock industry. Both groups of pest flies further transmit various infectious diseases to animals and humans. The present review summarizes recent research advancements in stable and horn fly chemical and sensory ecology, especially in the discovery of novel attractants and repellents, as well as their controls for these blood-sucking flies and beyond.


Assuntos
Controle de Insetos , Repelentes de Insetos , Feromônios , Animais , Controle de Insetos/métodos , Feromônios/farmacologia , Dípteros/fisiologia
6.
Acupunct Med ; : 9645284241248473, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38706189

RESUMO

Cocaine is a frequently abused and highly addictive drug that damages brain health and imposes substantial social and economic costs. Acupuncture has been used in the treatment of cocaine addiction and has been shown to improve abnormal mental and motor states. This article mainly focuses on the neurobiological mechanisms involving the central nervous system (CNS) and peripheral nervous system (PNS) that underlie the effects of acupuncture in the treatment of cocaine addiction. The central dopamine system is a key player in acupuncture treatment of cocaine addiction; the ventral tegmental area (VTA)-nucleus accumbens (NAc) signaling pathway, which has a modulatory influence on behavior and psychology after chronic use of cocaine, is a significant target of acupuncture action. Moreover, acupuncture alleviates cocaine-induced seizures or acute psychomotor responses through the paraventricular thalamus and the lateral habenula (LHb)-rostromedial tegmental (RMTg) nucleus circuits. The data suggest that acupuncture can impact various cocaine-induced issues via stimulation of diverse brain areas; nevertheless, the interconnection of these brain regions and the PNS mechanisms involved remain unknown. In this review, we also discuss the effects of specific acupuncture protocols on cocaine addiction and note that variations in needling modalities, current intensities and traditional acupuncture point locations have led to different experimental results. Therefore, standardized acupuncture protocols (with respect to stimulation methods, point locations and number of sessions) may become particularly important in future studies.

7.
Cancer Med ; 13(9): e7222, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38698687

RESUMO

BACKGROUND: The prognostic predictive tool for patients with colorectal liver metastasis (CRLM) is limited and the criteria for administering preoperative neoadjuvant chemotherapy in CRLM patients remain controversial. METHODS: This study enrolled 532 CRLM patients at West China Hospital (WCH) from January 2009 to December 2019. Prognostic factors were identified from the training cohort to construct a WCH-nomogram and evaluating accuracy in the validation cohort. Receiver operating characteristic (ROC) curve analysis was used to compare the prediction accuracy with other existing prediction tools. RESULTS: From the analysis of the training cohort, four independent prognostic risk factors, namely tumor marker score, KRAS mutation, primary lymph node metastasis, and tumor burden score were identified on which a WCH-nomogram was constructed. The C-index of the two cohorts were 0.674 (95% CI: 0.634-0.713) and 0.655 (95% CI: 0.586-0.723), respectively, which was better than the previously reported predication scores (CRS, m-CS and GAME score). ROC curves showed AUCs for predicting 1-, 3-, and 5-year overall survival (OS) of 0.758, 0.709, and 0.717 in the training cohort, and 0.860, 0.669, and 0.692 in the validation cohort, respectively. A cutoff value of 114.5 points was obtained for the WCH-nomogram total score based on the maximum Youden index of the ROC curve of 5-year OS. Risk stratification showed significantly better prognosis in the low-risk group, however, the high-risk group was more likely to benefit from neoadjuvant chemotherapy. CONCLUSIONS: The WCH-nomogram demonstrates superior prognostic stratification compared to prior scoring systems, effectively identifying CRLM patients who may benefit the most from neoadjuvant chemotherapy.


Assuntos
Neoplasias Colorretais , Hepatectomia , Neoplasias Hepáticas , Nomogramas , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/cirurgia , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/cirurgia , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/tratamento farmacológico , Masculino , Feminino , Pessoa de Meia-Idade , Prognóstico , Idoso , Curva ROC , Terapia Neoadjuvante , Biomarcadores Tumorais , Adulto , Proteínas Proto-Oncogênicas p21(ras)/genética , Fatores de Risco , Estudos Retrospectivos , China , Metástase Linfática , Mutação , Carga Tumoral
8.
Cancer Res ; 84(11): 1747-1763, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38471085

RESUMO

Intrahepatic cholangiocarcinoma (iCCA) is the second most prevalent primary liver cancer. Although the genetic characterization of iCCA has led to targeted therapies for treating tumors with FGFR2 alterations and IDH1/2 mutations, only a limited number of patients can benefit from these strategies. Epigenomic profiles have emerged as potential diagnostic and prognostic biomarkers for improving the treatment of cancers. In this study, we conducted whole-genome bisulfite sequencing on 331 iCCAs integrated with genetic, transcriptomic, and proteomic analyses, demonstrating the existence of four DNA methylation subtypes of iCCAs (S1-S4) that exhibited unique postoperative clinical outcomes. The S1 group was an IDH1/2 mutation-specific subtype with moderate survival. The S2 subtype was characterized by the lowest methylation level and the highest mutational burden among the four subtypes and displayed upregulation of a gene-expression pattern associated with cell cycle/DNA replication. The S3 group was distinguished by high interpatient heterogeneity of tumor immunity, a gene-expression pattern associated with carbohydrate metabolism, and an enrichment of KRAS alterations. Patients with the S2 and S3 subtypes had the shortest survival among the four subtypes. Tumors in the S4 subtype, which had the best prognosis, showed global methylation levels comparable to normal controls, increased FGFR2 fusions/BAP1 mutations, and the highest copy-number variant burdens. Further integrative and functional analyses identified GBP4 demethylation, which is highly prevalent in the S2 and S3 groups, as an epigenetic oncogenic factor that regulates iCCA proliferation, migration, and invasion. Together, this study identifies prognostic methylome alterations and epigenetic drivers in iCCA. SIGNIFICANCE: Characterization of the DNA methylome of intrahepatic cholangiocarcinoma integrated with genomic, transcriptomic, and proteomic analyses uncovers molecular mechanisms affected by genome-wide DNA methylation alterations, providing a resource for identifying potential therapeutic targets.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Metilação de DNA , Humanos , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Colangiocarcinoma/mortalidade , Prognóstico , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/mortalidade , Masculino , Feminino , Biomarcadores Tumorais/genética , Isocitrato Desidrogenase/genética , Mutação , Regulação Neoplásica da Expressão Gênica , Pessoa de Meia-Idade , Sequenciamento Completo do Genoma/métodos , Idoso , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Perfilação da Expressão Gênica
9.
PLoS One ; 19(1): e0296847, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38190402

RESUMO

Molecular breeding methods, such as marker-assisted selection and genomic selection, require high-throughput and cost-effective methods for isolating genomic DNA from plants, specifically from crop tissue or seed with high polysaccharides, lipids, and proteins. A quick and inexpensive high-throughput method for isolating genomic DNA from seed and leaf tissue from multiple crops was tested with a DNA isolation method that combines CTAB extraction buffer and lab-made SA-coated magnetic nanoparticles. This method is capable of isolating quality genomic DNA from leaf tissue and seeds in less than 2 hours with fewer steps than a standard CTAB extraction method. The yield of the genomic DNA was 582-729 ng per 5 leaf discs or 216-1869 ng per seed in soybean, 2.92-62.6 ng per 5 leaf discs or 78.9-219 ng per seed in wheat, and 30.9-35.4 ng per 5 leaf discs in maize. The isolated DNA was tested with multiple molecular breeding methods and was found to be of sufficient quality and quantity for PCR and targeted genotyping by sequencing methods such as molecular inversion probes (MIPs). The combination of SA-coated magnetic nanoparticles and CTAB extraction buffer is a fast, simple, and environmentally friendly, high-throughput method for both leaf tissues and seed(s) DNA preparation at low cost per sample. The DNA obtained from this method can be deployed in applied breeding programs for marker-assisted selection or genomic selection.


Assuntos
Nanopartículas de Magnetita , Cetrimônio , Melhoramento Vegetal , Sementes/genética , Inversão Cromossômica , Sondas Moleculares
10.
J Mol Med (Berl) ; 102(1): 81-94, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37987774

RESUMO

Tumor-associated macrophages (TAMs) represent a key factor in the tumor immune microenvironment (TME), exerting significant influence over tumor migration, invasion, immunosuppressive features, and drug resistance. Collagen triple helix repeat containing 1 (CTHRC1), a 30 KDa protein which was secreted during the tissue-repair process, is highly expressed in several malignant tumors, including colorectal cancer (CRC). Previous studies demonstrated that CTHRC1 expression in TAMs was positively correlated to M2 macrophage polarization and liver metastasis, while our discovery suggesting a novel mechanism that CTHRC1 secreted from cancer cell could indirectly interplay with TAMs. In this study, the high expression level of CTHRC1 was evaluated in CRC based on GEO and TCGA databases. Further, CTHRC1 was detected high in all stages of CRC patients by ELISA and was correlated to poor prognosis. Multispectral imaging of IHC demonstrated that M2 macrophage infiltration was increased accompanied with CTHRC1 enrichment, suggesting that CTHRC1 may have chemotactic effect on macrophages. In vitro, CTHRC1 could have chemotactic ability of macrophage in the presence of HT-29 cell line. Cytokine microarray revealed that CTHRC1 could up-regulate the CCL15 level of HT-29, pathway analysis demonstrated that CTHRC1 could regulate CCL15 by controlling the TGFß activation and Smad phosphorylation level. In vivo, knocking down of CTHRC1 from CT-26 also inhibits tumor formation. In conclusion, CTHRC1 could promote the chemotactic ability of macrophages by up-regulating CCL15 via TGFß/Smad pathway; additionally, a high level of CTHRC1 could promote macrophage's M2 polarization. This discovery may be related to tumor immune tolerance and tumor immunotherapy resistance in CRC. KEY MESSAGES: CTHRC1 promotes CRC progression by up-regulating CCL15 via TGF-ß/Smad pathways to further recruit tumor-associated macrophages. By the means of autocrine or paracrine, CTHRC1 can indeed promote macrophage chemotaxis and enhance the infiltration of macrophages in tumor tissues but in the presence of tumor cells. CAFs were another source of CTHRC1, indicating CTHRC1 can infiltrate tumor islet as well as the stomal and be secreted from both tumor cells and CAFs. This study validated CTHRC1 as a potential immune therapy target CRC.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Humanos , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia , Regulação para Cima , Transdução de Sinais , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Colorretais/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral , Linhagem Celular Tumoral , Proteínas Inflamatórias de Macrófagos/metabolismo , Quimiocinas CC/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo
11.
Signal Transduct Target Ther ; 8(1): 351, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37709738

RESUMO

The mineral dust-induced gene (MDIG) comprises a conserved JmjC domain and has the ability to demethylate histone H3 lysine 9 trimethylation (H3K9me3). Previous studies have indicated the significance of MDIG in promoting cell proliferation by modulating cell-cycle transition. However, its involvement in liver regeneration has not been extensively investigated. In this study, we generated mice with liver-specific knockout of MDIG and applied partial hepatectomy or carbon tetrachloride mouse models to investigate the biological contribution of MDIG in liver regeneration. The MDIG levels showed initial upregulation followed by downregulation as the recovery progressed. Genetic MDIG deficiency resulted in dramatically impaired liver regeneration and delayed cell cycle progression. However, the MDIG-deleted liver was eventually restored over a long latency. RNA-seq analysis revealed Myc as a crucial effector downstream of MDIG. However, ATAC-seq identified the reduced chromatin accessibility of OTX2 locus in MDIG-ablated regenerating liver, with unaltered chromatin accessibility of Myc locus. Mechanistically, MDIG altered chromatin accessibility to allow transcription by demethylating H3K9me3 at the OTX2 promoter region. As a consequence, the transcription factor OTX2 binding at the Myc promoter region was decreased in MDIG-deficient hepatocytes, which in turn repressed Myc expression. Reciprocally, Myc enhanced MDIG expression by regulating MDIG promoter activity, forming a positive feedback loop to sustain hepatocyte proliferation. Altogether, our results prove the essential role of MDIG in facilitating liver regeneration via regulating histone methylation to alter chromatin accessibility and provide valuable insights into the epi-transcriptomic regulation during liver regeneration.


Assuntos
Cromatina , Regeneração Hepática , Animais , Camundongos , Regeneração Hepática/genética , Proliferação de Células/genética , Fígado , Desmetilação
12.
Small ; 19(50): e2304406, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37616512

RESUMO

Defect-rich carbon materials are considered as one of the most promising anodes for potassium-ion batteries due to their enormous adsorption sites of K+ , while the realization of both rate capability and cycling stability is still greatly limited by unstable electrochemical kinetics and inevitable structure degradation. Herein, an Fe3+ -induced hydrothermal-pyrolysis strategy is reported to construct well-tailored hybrid carbon nanotubes network architecture (PP-CNT), in which the short-range graphitic nanodomains are in-situ localized in the pea pod shape hypocrystalline carbon. The N,O codoped hypocrystalline carbon region contributes to abundant defect sites for potassium ion storage, ensuring high reversible capacity. Meanwhile, the short-range graphitic nanodomains with expanded interlayer spacing facilitate stable K+ migration and fast electron transfer. Furthermore, the finite element analysis confirms the volume expansion caused by K+ intercalation can be availably buffered due to the multidirection stress release effect of the unique porous pea pod shape, endowing carbon nanotubes with superior structural integrity. Consequently, the PP-CNT anode exhibits superior potassium-storage performance, including high reversible capacity, exceptional rate capability, and ultralong cycling stability. This work opens a new avenue for the fabrication of advanced carbon materials for achieving durable and fast potassium storage.

13.
Cell Death Dis ; 14(7): 476, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37500626

RESUMO

Hepatocellular carcinoma (HCC) is a deadly malignancy with high genetic heterogeneity. TP53 mutation and c-MET activation are frequent events in human HCCs. Here, we discovered that the simultaneous mutations in TP53 and activation of c-MET occur in ~20% of human HCCs, and these patients show a poor prognosis. Importantly, we found that concomitant deletion of Trp53 and overexpression of c-MET (c-MET/sgp53) in the mouse liver led to HCC formation in vivo. Consistent with human HCCs, RNAseq showed that c-MET/sgp53 mouse HCCs were characterized by activated c-MET and Ras/MAPK cascades and increased tumor cell proliferation. Subsequently, a stably passaged cell line derived from a c-MET/sgp53 HCC and corresponding subcutaneous xenografts were generated. Also, in silico analysis suggested that the MEK inhibitor trametinib has a higher inhibition score in TP53 null human HCC cell lines, which was validated experimentally. We consistently found that trametinib effectively inhibited the growth of c-MET/sgp53 HCC cells and xenografts, supporting the possible usefulness of this drug for treating human HCCs with TP53-null mutations. Altogether, our study demonstrates that loss of TP53 cooperates with c-MET to drive hepatocarcinogenesis in vivo. The c-MET/sgp53 mouse model and derived HCC cell lines represent novel and useful preclinical tools to study hepatocarcinogenesis in the TP53 null background.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas Proto-Oncogênicas c-met , Proteína Supressora de Tumor p53 , Animais , Humanos , Camundongos , Carcinogênese/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Neoplasias Hepáticas/patologia , Mutação/genética , Proteína Supressora de Tumor p53/genética , Proteínas Proto-Oncogênicas c-met/genética
14.
Cancer Med ; 12(14): 14922-14936, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37326370

RESUMO

OBJECTIVE: Postoperative bile leakage (POBL) is one of the most common complications after liver resection. However, current studies on the risk factors for POBL and their impacts on surgical outcomes need to be more consistent. This study aims to conduct a meta-analysis to analyze the risk factors for POBL after hepatectomy. METHODS: We incorporated all eligible studies from Embase, PubMed, and the Web of Science database (until July 2022) into this study. RevMan and STATA software were used to analyze the extracted data. RESULTS: A total of 39 studies, including 43,824 patients, were included in this meta-analysis. We found that gender, partial hepatectomy, repeat of hepatectomy, extended hepatectomy, abdominal drain, diabetes, Child≥B, solitary tumor, and chemotherapy are the factors of grade B and C POBL. Some recognized risk factors were considered potential risk factors for grade B and C bile leakage because no subgroup analysis was performed, like HCC, cholangiocarcinoma, major resection, posterior sectionectomy, bi-segmentectomy, S4 involved, S8 involved, central hepatectomy, and bile duct resection/reconstruction. Meanwhile, cirrhosis, benign diseases, left hepatectomy, and Segment 1 resection were not significant for grade B and C bile leakage. The influence of lateral sectionectomy, anterior sectionectomy, S1 involved, S3 involved, high-risk procedure, laparoscope, and blood loss>1000 mL on POBL of ISGLS needs further research. Meanwhile, POBL significantly influenced overall survival (OS) after liver resection. CONCLUSIONS: We identified several risk factors for POBL after hepatectomy, which could prompt the clinician to decrease POBL rates and make more beneficial decisions for patients who underwent the hepatectomy.


Assuntos
Doenças Biliares , Carcinoma Hepatocelular , Neoplasias Hepáticas , Criança , Humanos , Carcinoma Hepatocelular/cirurgia , Neoplasias Hepáticas/etiologia , Hepatectomia/efeitos adversos , Hepatectomia/métodos , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Bile , Estudos Retrospectivos , Fatores de Risco , Doenças Biliares/etiologia , Doenças Biliares/cirurgia
15.
Sci Total Environ ; 895: 165070, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37364829

RESUMO

More than 20 million tons of ladle furnace slag are produced annually. This slag is mainly treated by stockpiling; however, stacking results in dust and heavy metal pollution. Utilizing this slag as a resource can reduce primary resource consumption and eliminate pollution. In this review, existing studies and practices related to slag are discussed, and applications for different slag types are analyzed. The findings reveal that under alkali- or gypsum-activated conditions, CaO-SiO2-MgO, CaO-Al2O3-MgO, and CaO-SiO2-Al2O3-MgO slags may act as a low-strength binder, a garnet- or ettringite-based binder, and a high-strength cementitious material, respectively. Partial replacement of cement with CaO-Al2O3-MgO or CaO-SiO2-Al2O3-MgO slag can adjust the settling time. Meanwhile, CaO-SiO2-Al2O3-FeO-MgO slag combined with fly ash can be used to prepare a high-strength geopolymer, and CaO-Al2O3-MgO and CaO-SiO2-MgO slags may yield high carbon dioxide sequestration percentages. However, the aforementioned applications could lead to secondary pollution because these slags contain heavy metals and sulfur. Removing them or suppressing their dissolution is therefore of significant interest. Reusing hot slag in a ladle furnace could be an efficient utilization strategy because it can recover heat energy while utilizing the components of the hot slag. However, adopting this approach necessitates the further development of an efficient method for removing sulfur from hot slag. Overall, this review elucidates the relationship between the utilization method and slag type and identifies future research directions, thereby providing references and guidance for future research on slag utilization.

16.
Front Mol Neurosci ; 16: 1152167, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122621

RESUMO

Neonatal hypoxic-ischaemic events, which can result in long-term neurological impairments or even cell death, are among the most significant causes of brain injury during neurodevelopment. The complexity of neonatal hypoxic-ischaemic pathophysiology and cellular pathways make it difficult to treat brain damage; hence, the development of new neuroprotective medicines is of great interest. Recently, numerous neuroprotective medicines have been developed to treat brain injuries and improve long-term outcomes based on comprehensive knowledge of the mechanisms that underlie neuronal plasticity following hypoxic-ischaemic brain injury. In this context, understanding of the medicinal potential of cannabinoids and the endocannabinoid system has recently increased. The endocannabinoid system plays a vital neuromodulatory role in numerous brain regions, ensuring appropriate control of neuronal activity. Its natural neuroprotection against adult brain injury or acute brain injury also clearly demonstrate the role of endocannabinoid signalling in modulating neuronal activity in the adult brain. The goal of this review is to examine how cannabinoid-derived compounds can be used to treat neonatal hypoxic-ischaemic brain injury and to assess the critical function of the endocannabinoid system and its potential for use as a new neuroprotective treatment for neonatal hypoxic-ischaemic brain injury.

18.
Int J Immunopathol Pharmacol ; 37: 3946320231178131, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37232164

RESUMO

Objectives: Cervical squamous cell carcinoma and cervical adenocarcinoma (CESC) are the second leading cause of deaths from malignant tumors in women, while their therapeutic and diagnostic aims are still finited. A growing body of evidence indicated that sphingosine-1-phosphate receptor 2 (S1PR2) plays essential roles in the occurrence and development about several human cancers. Nevertheless, the key mechanism and role mechanism of S1PR2 in CESC are still unclear.Methods: We first used Tissue Expression (GTEx) and Genotypic Cancer Genome Atlas (TCGA) data to perform pan-cancer analysis on the expression and prognosis of S1PR2, and found that S1PR2 may have a potential impact on CESC. To generate a protein-protein interaction (PPI) network using the STRING database. The clusterProfiler package is used for feature-rich analysis. The Tumor IMmune Estimation Resource was used to determine the connection between S1PR2 mRNA expression and immune infiltrates. Results: S1PR2 expression in CESC tissues was down-regulated compared with adjacent normal tissues. Kaplan-Meier analysis indicated that compared with patients with high expression of S1PR2, CESC patients with low S1PR2 expression had a worse prognosis. Reduced S1PR2 expression is associated with patients with high clinical stage, more histological types of squamous cell carcinoma, and poor primary treatment outcomes. The receiver operating characteristic curve of S1PR2 was 0.870. Correlation analysis showed that the mRNA expression of S1PR2 was related to immune infiltrates and tumor purity.Conclusion: Down-regulated S1PR2 expression is related to poor survival and immune infiltration in CESC. S1PR2 is a potential biomarker for poor prognosis and as a potential target for CESC immune therapy.


Assuntos
Adenocarcinoma , Carcinoma de Células Escamosas , Neoplasias do Colo do Útero , Feminino , Humanos , Adenocarcinoma/genética , Carcinoma de Células Escamosas/genética , Regulação para Baixo , Prognóstico , RNA Mensageiro , Receptores de Esfingosina-1-Fosfato , Neoplasias do Colo do Útero/genética
19.
Angew Chem Int Ed Engl ; 62(19): e202302693, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36896843

RESUMO

The charge transport through single-molecule electronic devices can be controlled mechanically by changing the molecular geometrical configuration in situ, but the tunable conductance range is typically less than two orders of magnitude. Herein, we proposed a new mechanical tuning strategy to control the charge transport through the single-molecule junctions via switching quantum interference patterns. By designing molecules with multiple anchoring groups, we switched the electron transport between the constructive quantum interference (CQI) pathway and the destructive quantum interference (DQI) pathway, and more than four orders of magnitude conductance variation can be achieved by shifting the electrodes in a range of about 0.6 nm, which is the highest conductance range ever achieved using mechanical tuning.

20.
Pharmacol Ther ; 245: 108391, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36963510

RESUMO

Non-alcoholic fatty liver disease (NAFLD), currently the leading cause of global chronic liver disease, has emerged as a major public health problem, more efficient therapeutics of which are thus urgently needed. Peroxisome proliferator-activated receptor γ (PPAR-γ), ligand-activated transcription factors of the nuclear hormone receptor superfamily, is considered a crucial metabolic regulator of hepatic lipid metabolism and inflammation. The role of PPAR-γ in the pathogenesis of NAFLD is gradually being recognized. Here, we outline the involvement of PPAR-γ in the pathogenesis of NAFLD through adipogenesis, insulin resistance, inflammation, oxidative stress, endoplasmic reticulum stress, and fibrosis. In addition, the evidence for PPAR-γ- targeted therapy for NAFLD are summarized. Altogether, PPAR-γ is a promising therapeutic target for NAFLD, and the development of drugs that can balance the beneficial and undesirable effects of PPAR-γ will bring new light to NAFLD patients.


Assuntos
Hepatopatia Gordurosa não Alcoólica , PPAR gama , Humanos , Inflamação/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA