Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3639, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684745

RESUMO

Avalanche or carrier-multiplication effect, based on impact ionization processes in semiconductors, has a great potential for enhancing the performance of photodetector and solar cells. However, in practical applications, it suffers from high threshold energy, reducing the advantages of carrier multiplication. Here, we report on a low-threshold avalanche effect in a stepwise WSe2 structure, in which the combination of weak electron-phonon scattering and high electric fields leads to a low-loss carrier acceleration and multiplication. Owing to this effect, the room-temperature threshold energy approaches the fundamental limit, Ethre ≈ Eg, where Eg is the bandgap of the semiconductor. Our findings offer an alternative perspective on the design and fabrication of future avalanche and hot-carrier photovoltaic devices.

2.
Adv Mater ; 36(21): e2313134, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38331419

RESUMO

The barrier structure is designed to enhance the operating temperature of the infrared detector, thereby improving the efficiency of collecting photogenerated carriers and reducing dark current generation, without suppressing the photocurrent. However, the development of barrier detectors using conventional materials is limited due to the strict requirements for lattice and band matching. In this study, a high-performance unipolar barrier detector is designed utilizing a black arsenic phosphorus/molybdenum disulfide/black phosphorus van der Waals heterojunction. The device exhibits a broad response bandwidth ranging from visible light to mid-wave infrared (520 nm to 4.6 µm), with a blackbody detectivity of 2.7 × 1010 cmHz-1/2 W-1 in the mid-wave infrared range at room temperature. Moreover, the optical absorption anisotropy of black arsenic phosphorus enables polarization resolution detection, achieving a polarization extinction ratio of 35.5 at 4.6 µm. Mid-wave infrared imaging of the device is successfully demonstrated at room temperature, highlighting the significant potential of barrier devices based on van der Waals heterojunctions in mid-wave infrared detection.

3.
Adv Mater ; 36(3): e2301197, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36960667

RESUMO

With the continuous advancement of nanofabrication techniques, development of novel materials, and discovery of useful manipulation mechanisms in high-performance applications, especially photodetectors, the morphology of junction devices and the way junction devices are used are fundamentally revolutionized. Simultaneously, new types of photodetectors that do not rely on any junction, providing a high signal-to-noise ratio and multidimensional modulation, have also emerged. This review outlines a unique category of material systems supporting novel junction devices for high-performance detection, namely, the van der Waals materials, and systematically discusses new trends in the development of various types of devices beyond junctions. This field is far from mature and there are numerous methods to measure and evaluate photodetectors. Therefore, it is also aimed to provide a solution from the perspective of applications in this review. Finally, based on the insight into the unique properties of the material systems and the underlying microscopic mechanisms, emerging trends in junction devices are discussed, a new morphology of photodetectors is proposed, and some potential innovative directions in the subject area are suggested.

4.
Phys Rev E ; 108(5-2): 055210, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38115498

RESUMO

Since the characteristic timescales of the various transport processes inside the discharge plasma span several orders of magnitude, it can be regarded as a typical fast-slow system. Interestingly, in this work, a special kind of complex oscillatory dynamics composed of a series of large-amplitude relaxation oscillations and small-amplitude near-harmonic oscillations, namely, mixed-mode oscillations (MMOs), was observed. By using the ballast resistance as the control parameter, a period-adding bifurcation sequence of the MMOs, i.e., from L^{s} to L^{s+1}, was obtained in a low-pressure DC glow discharge system. Meanwhile, a series of intermittently chaotic regions caused by inverse saddle-node bifurcation was embedded between the two adjacent periodic windows. The formation mechanism of MMOs was analyzed, and the results indicated that the competition between electron production and electron loss plays an important role. Meanwhile, the nonlinear time series analysis technique was used to study the dynamic behavior quantitatively. The attractor in the reconstructed phase space indicated the existence of the homoclinic orbits of type Γ^{-}. In addition, by calculating the largest Lyapunov exponent (LLE), the chaotic nature of these states was confirmed and quantitatively characterized. With the decrease in the ballast resistance, the return map of the chaotic state gradually changed from the nearly one-dimensional single-peak structure to the multibranch structure, which indicates that the dissipation of the system decreased. By further calculating the correlation dimension, it was shown that the complexity of the strange attractors increased for higher-order chaotic states.

5.
Small ; 19(29): e2300010, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37058131

RESUMO

Photodetectors and imagers based on 2D layered materials are currently subject to a rapidly expanding application space, with an increasing demand for cost-effective and lightweight devices. However, the underlying carrier transport across the 2D homo- or heterojunction channel driven by the external electric field, like a gate or drain bias, is still unclear. Here, a visible-near infrared photodetector based on van der Waals stacked molybdenum telluride (MoTe2 ) and black phosphorus (BP) is reported. The type-I and type-II band alignment can be tuned by the gate and drain voltage combined showing a dynamic modulation of the conduction polarity and negative differential transconductance. The heterojunction devices show a good photoresponse to light illumination ranging from 520-2000 nm. The built-in potential at the MoTe2 /BP interface can efficiently separate photoexcited electron-hole pairs with a high responsivity of 290 mA W-1 , an external quantum efficiency of 70%, and a fast photoresponse of 78 µs under zero bias.

6.
Nanotechnology ; 34(24)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36881863

RESUMO

Low-dimensional tin selenide nanoribbons (SnSe NRs) show a wide range of applications in optoelectronics fields such as optical switches, photodetectors, and photovoltaic devices due to the suitable band gap, strong light-matter interaction, and high carrier mobility. However, it is still challenging to grow high-quality SnSe NRs for high-performance photodetectors so far. In this work, we successfully synthesized high-quality p-type SnSe NRs by chemical vapor deposition and then fabricated near-infrared photodetectors. The SnSe NR photodetectors show a high responsivity of 376.71 A W-1, external quantum efficiency of 5.65 × 104%, and detectivity of 8.66 × 1011Jones. In addition, the devices show a fast response time with rise and fall time of up to 43µs and 57µs, respectively. Furthermore, the spatially resolved scanning photocurrent mapping shows very strong photocurrent at the metal-semiconductor contact regions, as well as fast generation-recombination photocurrent signals. This work demonstrated that p-type SnSe NRs are promising material candidates for broad-spectrum and fast-response optoelectronic devices.

7.
Cereb Cortex ; 33(3): 634-650, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35244170

RESUMO

Tracking and predicting the temporal structure of nociceptive inputs is crucial to promote survival, as proper and immediate reactions are necessary to avoid actual or potential bodily injury. Neural activities elicited by nociceptive stimuli with different temporal structures have been described, but the neural processes responsible for translating nociception into pain perception are not fully elucidated. To tap into this issue, we recorded electroencephalographic signals from 48 healthy participants receiving thermo-nociceptive stimuli with 3 different durations and 2 different intensities. We observed that pain perception and several brain responses are modulated by stimulus duration and intensity. Crucially, we identified 2 sustained brain responses that were related to the emergence of painful percepts: a low-frequency component (LFC, < 1 Hz) originated from the insula and anterior cingulate cortex, and an alpha-band event-related desynchronization (α-ERD, 8-13 Hz) generated from the sensorimotor cortex. These 2 sustained brain responses were highly coupled, with the α-oscillation amplitude that fluctuated with the LFC phase. Furthermore, the translation of stimulus duration into pain perception was serially mediated by α-ERD and LFC. The present study reveals how brain responses elicited by nociceptive stimulation reflect the complex processes occurring during the translation of nociceptive information into pain perception.


Assuntos
Nociceptividade , Dor , Humanos , Nociceptividade/fisiologia , Percepção da Dor/fisiologia , Eletroencefalografia , Giro do Cíngulo/fisiologia
8.
Light Sci Appl ; 11(1): 170, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35661682

RESUMO

In semiconductor manufacturing, PN junction is formed by introducing dopants to activate neighboring electron and hole conductance. To avoid structural distortion and failure, it generally requires the foreign dopants localize in the designated micro-areas. This, however, is challenging due to an inevitable interdiffusion process. Here we report a brand-new junction architecture, called "layer PN junction", that might break through such limit and help redefine the semiconductor device architecture. Different from all existing semiconductors, we find that a variety of van der Waals materials are doping themselves from n- to p-type conductance with an increasing/decreasing layer-number. It means the capability of constructing homogeneous PN junctions in monolayers' dimension/precision, with record high rectification-ratio (>105) and low cut-off current (<1 pA). More importantly, it spawns intriguing functionalities, like gate-switchable-rectification and noise-signal decoupled avalanching. Findings disclosed here might open up a path to develop novel nanodevice applications, where the geometrical size becomes the only critical factor in tuning charge-carrier distribution and thus functionality.

9.
Light Sci Appl ; 11(1): 6, 2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-34974520

RESUMO

With the increasing demand for multispectral information acquisition, infrared multispectral imaging technology that is inexpensive and can be miniaturized and integrated into other devices has received extensive attention. However, the widespread usage of such photodetectors is still limited by the high cost of epitaxial semiconductors and complex cryogenic cooling systems. Here, we demonstrate a noncooled two-color infrared photodetector that can provide temporal-spatial coexisting spectral blackbody detection at both near-infrared and mid-infrared wavelengths. This photodetector consists of vertically stacked back-to-back diode structures. The two-color signals can be effectively separated to achieve ultralow crosstalk of ~0.05% by controlling the built-in electric field depending on the intermediate layer, which acts as an electron-collecting layer and hole-blocking barrier. The impressive performance of the two-color photodetector is verified by the specific detectivity (D*) of 6.4 × 109 cm Hz1/2 W-1 at 3.5 µm and room temperature, as well as the promising NIR/MWIR two-color infrared imaging and absolute temperature detection.

10.
Small ; 18(5): e2103963, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34632717

RESUMO

Single-photon detectors (SPDs) that can sense individual photons are the most sensitive instruments for photodetection. Established SPDs such as conventional silicon or III-V compound semiconductor avalanche diodes and photomultiplier tubes have been used in a wide range of time-correlated photon-counting applications, including quantum information technologies, in vivo biomedical imaging, time-of-flight 3D scanners, and deep-space optical communications. However, further development of these fields requires more sophisticated detectors with high detection efficiency, fast response, and photon-number-resolving ability, etc. Thereby, significant efforts have been made to improve the performance of conventional SPDs and to develop new photon-counting technologies. In this review, the working mechanisms and key performance metrics of conventional SPDs are first summarized. Then emerging photon-counting detectors (in the visible to infrared range) based on 0D quantum dots, 1D quantum nanowires, and 2D layered materials are discussed. These low-dimensional materials exhibit many exotic properties due to the quantum confinement effect. And photodetectors built from these nD-materials (n = 0, 1, 2) can potentially be used for ultra-weak light detection. By reviewing the status and discussing the challenges faced by SPDs, this review aims to provide future perspectives on the research directions of emerging photon-counting technologies.


Assuntos
Nanofios , Pontos Quânticos , Fótons , Semicondutores , Silício
11.
Natl Sci Rev ; 8(9): nwaa295, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34691730

RESUMO

In modern electronics and optoelectronics, hot electron behaviors are highly concerned, as they determine the performance limit of a device or system, like the associated thermal or power constraint of chips and the Shockley-Queisser limit for solar cell efficiency. To date, however, the manipulation of hot electrons has been mostly based on conceptual interpretations rather than a direct observation. The problem arises from a fundamental fact that energy-differential electrons are mixed up in real-space, making it hard to distinguish them from each other by standard measurements. Here we demonstrate a distinct approach to artificially (spatially) separate hot electrons from cold ones in semiconductor nanowire transistors, which thus offers a unique opportunity to observe and modulate electron occupied state, energy, mobility and even path. Such a process is accomplished through the scanning-photocurrent-microscopy measurements by activating the intervalley-scattering events and 1D charge-neutrality rule. Findings here may provide a new degree of freedom in manipulating non-equilibrium electrons for both electronic and optoelectronic applications.

12.
Small ; 17(47): e2102855, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34647416

RESUMO

2D materials, of which the carrier type and concentration are easily tuned, show tremendous superiority in electronic and optoelectronic applications. However, the achievements are still quite far away from practical applications. Much more effort should be made to further improve their performance. Here, p-type MoSe2 is successfully achieved via substitutional doping of Ta atoms, which is confirmed experimentally and theoretically, and outstanding homojunction photodetectors and inverters are fabricated. MoSe2 p-n homojunction device with a low reverse current (300 pA) exhibits a high rectification ratio (104 ). The analysis of dark current reveals the domination of the Shockley-Read-Hall (SRH) and band-to-band tunneling (BTB) current. The homojunction photodetector exhibits a large open-circuit voltage (0.68 V) and short-circuit currents (1 µA), which is suitable for micro-solar cells. Furthermore, it possesses outstanding responsivity (0.28 A W-1 ), large external quantum efficiency (42%), and a high signal-to-noise ratio (≈107 ). Benefiting from the continuous energy band of homojunction, the response speed reaches up to 20 µs. Besides, the Ta-doped MoSe2 inverter exhibits a high voltage gain (34) and low power consumption (127 nW). This work lays a foundation for the practical application of 2D material devices.

13.
Nano Lett ; 21(18): 7761-7768, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34460270

RESUMO

Hot carrier harvest could save 30% energy loss in solar cells. So far, however, it is still unreachable as the photoexcited hot carriers are short-lived, ∼1 ps, determined by a rapid relaxation process, thus invalidating any reprocessing efforts. Here, we propose and demonstrate a feasible route to reserve hot electrons for efficient collection. It is accomplished by an intentional mix of cubic zinc-blend and hexagonal wurtzite phases in III-V semiconductor nanowires. Additional energy levels are then generated above the conduction band minimum, capturing and storing hot electrons before they cool down to the band edges. We also show the superiority of core/shell nanowire (radial heterostructure) in extracting hot electrons. The strategy disclosed here may offer a unique opportunity to modulate hot carriers for efficient solar energy harvest.

14.
Adv Sci (Weinh) ; 8(14): e2100569, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34032025

RESUMO

Photodetectors built from conventional bulk materials such as silicon, III-V or II-VI compound semiconductors are one of the most ubiquitous types of technology in use today. The past decade has witnessed a dramatic increase in interest in emerging photodetectors based on perovskite materials driven by the growing demands for uncooled, low-cost, lightweight, and even flexible photodetection technology. Though perovskite has good electrical and optical properties, perovskite-based photodetectors always suffer from nonideal quantum efficiency and high-power consumption. Joint manipulation of electrons and photons in perovskite photodetectors is a promising strategy to improve detection efficiency. In this review, electrical and optical characteristics of typical types of perovskite photodetectors are first summarized. Electrical manipulations of electrons in perovskite photodetectors are discussed. Then, artificial photonic nanostructures for photon manipulations are detailed to improve light absorption efficiency. By reviewing the manipulation of electrons and photons in perovskite photodetectors, this review aims to provide strategies to achieve high-performance photodetectors.

15.
ACS Appl Mater Interfaces ; 13(20): 24062-24069, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33977715

RESUMO

Flexible pressure sensors have emerged as an indispensable part of wearable devices due to their application in physiological activity monitoring. To realize long-term on-body service, they are increasingly required for properties of conformability, air permeability, and durability. However, the enhancement of sensitivity remains a challenge for ultrathin capacitive sensors, particularly in the low-pressure region. Here, we introduced a highly sensitive and ultrathin capacitive pressure sensor based on a breathable all-fabric network with a micropatterned nanofiber dielectric layer, an all-fabric capacitive sensor (AFCS). This all-fabric network endows a series of exceptional performances, such as high sensitivity (8.31 kPa-1 under 1 kPa), ultralow detection limit (0.5 Pa), wide detection range (0.5 Pa to 80 kPa), and excellent robustness (10 000 dynamic cycles). Besides, the all-fabric structure provides other properties for the AFCS, e.g., high skin conformability, super thinness (dozens of micrometers), and exceptional air permeability. Our AFCS shows promising potential in breathing track, muscle activity detection, fingertip pressure monitoring, and spatial pressure distribution, paving way for comfortable skinlike epidermal electronics.


Assuntos
Monitorização Fisiológica/instrumentação , Nanofibras/química , Dispositivos Eletrônicos Vestíveis , Capacitância Elétrica , Desenho de Equipamento , Humanos , Sensibilidade e Especificidade
16.
Small ; 17(4): e2006765, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33345467

RESUMO

2D layered photodetectors have been widely researched for intriguing optoelectronic properties but their application fields are limited by the bandgap. Extending the detection waveband can significantly enrich functionalities and applications of photodetectors. For example, after breaking through bandgap limitation, extrinsic Si photodetectors are used for short-wavelength infrared or even long-wavelength infrared detection. Utilizing extrinsic photoconduction to extend the detection waveband of 2D layered photodetectors is attractive and desirable. However, extrinsic photoconduction has yet not been observed in 2D layered materials. Here, extrinsic photoconduction-induced short-wavelength infrared photodetectors based on Ge-based chalcogenides are reported for the first time and the effectiveness of intrinsic point defects are demonstrated. The detection waveband of room-temperature extrinsic GeSe photodetectors with the assistance of Ge vacancies is broadened to 1.6 µm. Extrinsic GeSe photodetectors have an excellent external quantum efficiency (0.5%) at the communication band of 1.31 µm and polarization-resolved capability to subwaveband radiation. Moreover, room-temperature extrinsic GeS photodetectors with a detection waveband to the communication band of 1.55 µm further verify the versatility of intrinsic point defects. This approach provides design strategies to enrich the functionalities of 2D layered photodetectors.

17.
Light Sci Appl ; 9: 160, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32963772

RESUMO

The advent of low-dimensional materials with peculiar structure and superb band properties provides a new canonical form for the development of photodetectors. However, the limited exploitation of basic properties makes it difficult for devices to stand out. Here, we demonstrate a hybrid heterostructure with ultrathin vanadium dioxide film and molybdenum ditelluride nanoflake. Vanadium dioxide is a classical semiconductor with a narrow bandgap, a high temperature coefficient of resistance, and phase transformation. Molybdenum ditelluride, a typical two-dimensional material, is often used to construct optoelectronic devices. The heterostructure can realize three different functional modes: (i) the p-n junction exhibits ultrasensitive detection (450 nm-2 µm) with a dark current down to 0.2 pA and a response time of 17 µs, (ii) the Schottky junction works stably under extreme conditions such as a high temperature of 400 K, and (iii) the bolometer shows ultrabroad spectrum detection exceeding 10 µm. The flexible switching between the three modes makes the heterostructure a potential candidate for next-generation photodetectors from visible to longwave infrared radiation (LWIR). This type of photodetector combines versatile detection modes, shedding light on the hybrid application of novel and traditional materials, and is a prototype of advanced optoelectronic devices.

18.
Nanotechnology ; 31(37): 374002, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32480385

RESUMO

Broadband infrared photodetectors based on two-dimensional (2D) materials which are the research focus in the infrared field, have wide applications in remote sensing, thermal imaging, and astronomy observation. In this article, the photodetector based on 2D ferromagnetic material CoSe is studied at room temperature, demonstrating the air-stable, broadband, and up to long wavelength properties. The CoSe material is applied to infrared photodetectors for the first time. The 2D material CoSe is synthesized by using the chemical vapor deposition method. The size of the as-grown CoSe is up to 71.8 µm. The photoresponse of the CoSe photodetector ranges from 450 nm to 10.6 µm. The photoresponsivity of this photodetector is up to 2.58 A W-1 under the 10.6 µm illumination at room temperature. This work provides a new material for broadband photodetector at room temperature and builds a bridge for the magnetoelectronic and broadband photoelectric fields.

19.
Nanotechnology ; 31(33): 335204, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32348965

RESUMO

In recent years, as a direct wide band gap semiconductor, zinc oxide (ZnO) nanomaterial has attracted a lot of attention. However, the widely investigated ZnO materials are strongly limited in fast-response and broadband photodetectors due to their inherent weaknesses, so an effective structure or mechanism of ZnO nanostructure photodetector is greatly needed. In this work, a photogating-controlled photodetector based on a ZnO nanosheet-HfO2-lightly doped Si architecture is demonstrated. Its performance was significantly improved by the photogating-controlled local field at the Si and HfO2 interfaces compared to the findings in other published works on ZnO. Consequently, the photodetector not only effectively balances the responsivity (as high as 5.6 A W-1) and response time (400 µs), but also broadens the wavelength response of the ZnO-based photodetectors from visible to near-infrared light range (~1200 nm). Additionally, the photogating-controlled ZnO photodetector enables high-resolution imaging both in the visible and near-infrared bands. Our photogating-controlled ZnO photodetectors not only exemplify the controllability of the gate electrode in high mobility materials but also provide a basis for the development of fast speed and high responsivity detection of high mobility materials.

20.
Nanotechnology ; 31(29): 294004, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32235081

RESUMO

In recent years, quasi-1D semiconductor nanowires have attracted significant research interest in the field of optoelectronic devices. Indium arsenide (InAs) nanowire, a III-V compound semiconductor structure with a narrow band gap, shows high electron mobility and high absorption from the visible to the mid-wave infrared (MWIR), holding promise for room-temperature high-performance infrared photodetectors. Therefore, the material growth, device preparation and performance characteristics have attracted increasing attention, enabling high-sensitivity InAs nanowire photodetector from the visible to the MWIR at room temperature. This review starts by discussing the growth process of the low-dimensional structure and elementary properties of the material, such as the crystalline phase, mobility, morphology, surface states and metal contacts. Then, three solutions, including the visible-light-assisted infrared photodetection technology, vertical nanowire-array technology and band engineering by the growth of InAsSb nanowires with increasing Sb components, are elaborated to obtain longer cut-off wavelength MWIR photodetectors based on single InAs nanowire and its heterojunction structure. Finally, the potential and challenges of the state-of-the-art optoelectronic technologies for InAs nanowire MWIR photodetectors are summarized and compared, and preliminary suggestions for the technical development route and prospects are presented. This review mainly delineates the research progress of material growth, device fabrication and performance characterization of InAs nanowire MWIR photodetectors, providing a reference for the development of the next-generation high-performance photodetectors over a wide spectrum range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA