Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 11(6): e0267623, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37943512

RESUMO

IMPORTANCE: Spike-receptor interaction is a critical determinant for the host range of coronaviruses. In this study, we investigated the SARS-CoV-2 WHU01 strain and five WHO-designated SARS-CoV-2 variants of concern (VOCs), including Alpha, Beta, Gamma, Delta, and the early Omicron variant, for their Spike interactions with ACE2 proteins of 18 animal species. First, the receptor-binding domains (RBDs) of Alpha, Beta, Gamma, and Omicron were found to display progressive gain of affinity to mouse ACE2. More interestingly, these RBDs were also found with progressive loss of affinities to multiple ACE2 orthologs. The Omicron RBD showed decreased or complete loss of affinity to eight tested animal ACE2 orthologs, including that of some livestock animals (horse, donkey, and pig), pet animals (dog and cat), and wild animals (pangolin, American pika, and Rhinolophus sinicus bat). These findings shed light on potential host range shift of SARS-CoV-2 VOCs, especially that of the Omicron variant.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Doenças do Gato , Quirópteros , Doenças do Cão , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Gatos , Cães , Camundongos , Enzima de Conversão de Angiotensina 2/metabolismo , Animais Selvagens/virologia , Doenças do Gato/virologia , Quirópteros/virologia , COVID-19/metabolismo , Doenças do Cão/virologia , Cavalos/virologia , Mutação , Ligação Proteica , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Suínos/virologia , Glicoproteína da Espícula de Coronavírus/genética
2.
Sci Rep ; 13(1): 13665, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37607960

RESUMO

Solar flares are explosions on the Sun. They happen when energy stored in magnetic fields around solar active regions (ARs) is suddenly released. Solar flares and accompanied coronal mass ejections are sources of space weather, which negatively affects a variety of technologies at or near Earth, ranging from blocking high-frequency radio waves used for radio communication to degrading power grid operations. Monitoring and providing early and accurate prediction of solar flares is therefore crucial for preparedness and disaster risk management. In this article, we present a transformer-based framework, named SolarFlareNet, for predicting whether an AR would produce a [Formula: see text]-class flare within the next 24 to 72 h. We consider three [Formula: see text] classes, namely the [Formula: see text]M5.0 class, the [Formula: see text]M class and the [Formula: see text]C class, and build three transformers separately, each corresponding to a [Formula: see text] class. Each transformer is used to make predictions of its corresponding [Formula: see text]-class flares. The crux of our approach is to model data samples in an AR as time series and to use transformers to capture the temporal dynamics of the data samples. Each data sample consists of magnetic parameters taken from Space-weather HMI Active Region Patches (SHARP) and related data products. We survey flare events that occurred from May 2010 to December 2022 using the Geostationary Operational Environmental Satellite X-ray flare catalogs provided by the National Centers for Environmental Information (NCEI), and build a database of flares with identified ARs in the NCEI flare catalogs. This flare database is used to construct labels of the data samples suitable for machine learning. We further extend the deterministic approach to a calibration-based probabilistic forecasting method. The SolarFlareNet system is fully operational and is capable of making near real-time predictions of solar flares on the Web.

3.
Microbiol Spectr ; 11(4): e0110023, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37395664

RESUMO

As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have been causing increasingly serious drug resistance problem, development of broadly effective and hard-to-escape anti-SARS-CoV-2 agents is an urgent need. Here, we describe further development and characterization of two SARS-CoV-2 receptor decoy proteins, ACE2-Ig-95 and ACE2-Ig-105/106. We found that both proteins had potent and robust in vitro neutralization activities against diverse SARS-CoV-2 variants, including BQ.1 and XBB.1, that are resistant to most clinically used monoclonal antibodies. In a stringent lethal SARS-CoV-2 infection mouse model, both proteins lowered the lung viral load by up to ~1,000-fold, prevented the emergence of clinical signs in >75% animals, and increased the animal survival rate from 0% (untreated) to >87.5% (treated). These results demonstrate that both proteins are good drug candidates for protecting animals from severe COVID-19. In a head-to-head comparison of these two proteins with five previously described ACE2-Ig constructs, we found that two constructs, each carrying five surface mutations in the ACE2 region, had partial loss of neutralization potency against three SARS-CoV-2 variants. These data suggest that extensively mutating ACE2 residues near the receptor binding domain (RBD)-binding interface should be avoided or performed with extra caution. Furthermore, we found that both ACE2-Ig-95 and ACE2-Ig-105/106 could be produced to the level of grams per liter, demonstrating the developability of them as biologic drug candidates. Stress condition stability testing of them further suggests that more studies are required in the future to improve the stability of these proteins. These studies provide useful insight into critical factors for engineering and preclinical development of ACE2 decoys as broadly effective therapeutics against diverse ACE2-utilizing coronaviruses. IMPORTANCE Engineering soluble ACE2 proteins that function as a receptor decoy to block SARS-CoV-2 infection is a very attractive approach to creating broadly effective and hard-to-escape anti-SARS-CoV-2 agents. This article describes development of two antibody-like soluble ACE2 proteins that broadly block diverse SARS-CoV-2 variants, including Omicron. In a stringent COVID-19 mouse model, both proteins successfully protected >87.5% animals from lethal SARS-CoV-2 infection. In addition, a head-to-head comparison of the two constructs developed in this study with five previously described ACE2 decoy constructs was performed here. Two previously described constructs with relatively more ACE2 surface mutations were found with less robust neutralization activities against diverse SARS-CoV-2 variants. Furthermore, the developability of the two proteins as biologic drug candidates was also assessed here. This study provides two broad anti-SARS-CoV-2 drug candidates and useful insight into critical factors for engineering and preclinical development of ACE2 decoys as broadly effective therapeutics against diverse ACE2-utilizing coronaviruses.


Assuntos
Produtos Biológicos , COVID-19 , Animais , Camundongos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Modelos Animais de Doenças
4.
Mol Ther ; 30(1): 184-197, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34740791

RESUMO

B cells have been engineered ex vivo to express an HIV-1 broadly neutralizing antibody (bNAb). B cell reprograming may be scientifically and therapeutically useful, but current approaches limit B cell repertoire diversity and disrupt the organization of the heavy-chain locus. A more diverse and physiologic B cell repertoire targeting a key HIV-1 epitope could facilitate evaluation of vaccines designed to elicit bNAbs, help identify more potent and bioavailable bNAb variants, or directly enhance viral control in vivo. Here we address the challenges of generating such a repertoire by replacing the heavy-chain CDR3 (HCDR3) regions of primary human B cells. To do so, we identified and utilized an uncharacterized Cas12a ortholog that recognizes PAM motifs present in human JH genes. We also optimized the design of 200 nucleotide homology-directed repair templates (HDRT) by minimizing the required 3'-5' deletion of the HDRT-complementary strand. Using these techniques, we edited primary human B cells to express a hemagglutinin epitope tag and the HCDR3 regions of the bNAbs PG9 and PG16. Those edited with bNAb HCDR3 efficiently bound trimeric HIV-1 antigens, implying they could affinity mature in vivo in response to the same antigens. This approach generates diverse B cell repertoires recognizing a key HIV-1 neutralizing epitope.


Assuntos
Infecções por HIV , HIV-1 , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , Epitopos/genética , Anticorpos Anti-HIV/genética , Infecções por HIV/genética , Infecções por HIV/terapia , HIV-1/genética , Humanos
5.
Mol Ther Nucleic Acids ; 24: 40-53, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-33738137

RESUMO

CRISPR effector proteins introduce double-stranded breaks into the mammalian genome, facilitating gene editing by non-homologous end-joining or homology-directed repair. Unlike the more commonly studied Cas9, the CRISPR effector protein Cas12a/Cpf1 recognizes a T-rich protospacer adjacent motif (PAM) and can process its own CRISPR RNA (crRNA) array, simplifying the use of multiple guide RNAs. We observed that the Cas12a ortholog of Lachnospiraceae bacterium MA2020 (Lb2Cas12a) edited mammalian genes with efficiencies comparable to those of AsCas12a and LbCas12a. Compared to these well-characterized Cas12a orthologs, Lb2Cas12a is smaller and recognizes a narrow set of PAM TTTV. We introduced two mutations into Lb2Cas12a, Q571K and C1003Y, that increased its cleavage efficiency for a range of target sequences beyond those of the commonly used Cas12a orthologs AsCas12a and LbCas12a. In addition to the canonical TTTV PAM, this variant, Lb2-KY, also efficiently cleaved target regions with CTTN PAMs. Finally, we demonstrated that Lb2-KY ribonucleoprotein (RNP) complexes edited two hemoglobin target regions useful for correcting common forms of sickle-cell anemia more efficiently than commercial AsCas12a RNP complexes. Thus, Lb2-KY has distinctive properties useful for modifying a range of clinically relevant targets in the human genome.

6.
J Virol ; 94(22)2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-32847856

RESUMO

The ongoing coronavirus disease 2019 (COVID-19) pandemic has caused >20 million infections and >750,000 deaths. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of COVID-19, has been found closely related to the bat coronavirus strain RaTG13 (Bat-CoV RaTG13) and a recently identified pangolin coronavirus (Pangolin-CoV-2020). Here, we first investigated the ability of SARS-CoV-2 and three related coronaviruses to utilize animal orthologs of angiotensin-converting enzyme 2 (ACE2) for cell entry. We found that ACE2 orthologs of a wide range of domestic and wild mammals, including camels, cattle, horses, goats, sheep, cats, rabbits, and pangolins, were able to support cell entry of SARS-CoV-2, suggesting that these species might be able to harbor and spread this virus. In addition, the pangolin and bat coronaviruses, Pangolin-CoV-2020 and Bat-CoV RaTG13, were also found able to utilize human ACE2 and a number of animal-ACE2 orthologs for cell entry, indicating risks of spillover of these viruses into humans in the future. We then developed potently anticoronavirus ACE2-Ig proteins that are broadly effective against the four distinct coronaviruses. In particular, through truncating ACE2 at its residue 740 but not 615, introducing a D30E mutation, and adopting an antibody-like tetrameric-ACE2 configuration, we generated an ACE2-Ig variant that neutralizes SARS-CoV-2 at picomolar range. These data demonstrate that the improved ACE2-Ig variants developed in this study could potentially be developed to protect from SARS-CoV-2 and some other SARS-like viruses that might spillover into humans in the future.IMPORTANCE The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of the currently uncontrolled coronavirus disease 2019 (COVID-19) pandemic. It is important to study the host range of SARS-CoV-2, because some domestic species might harbor the virus and transmit it back to humans. In addition, insight into the ability of SARS-CoV-2 and SARS-like viruses to utilize animal orthologs of the SARS-CoV-2 receptor ACE2 might provide structural insight into improving ACE2-based viral entry inhibitors. In this study, we found that ACE2 orthologs of a wide range of domestic and wild animals can support cell entry of SARS-CoV-2 and three related coronaviruses, providing insights into identifying animal hosts of these viruses. We also developed recombinant ACE2-Ig proteins that are able to potently block these viral infections, providing a promising approach to developing antiviral proteins broadly effective against these distinct coronaviruses.


Assuntos
Anticorpos Neutralizantes/genética , Betacoronavirus/fisiologia , Coronavirus/classificação , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Neutralizantes/química , Betacoronavirus/genética , Coronavirus/genética , Coronavirus/fisiologia , Modelos Animais de Doenças , Células HEK293 , Humanos , Imunoglobulinas/química , Imunoglobulinas/genética , Modelos Químicos , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Receptores Virais/química , Receptores Virais/genética , Proteínas Recombinantes/genética , SARS-CoV-2 , Internalização do Vírus/efeitos dos fármacos
7.
Vet Microbiol ; 246: 108742, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32605747

RESUMO

Porcine epidemic diarrhea virus (PEDV) causes severe clinical diarrhea in neonatal piglets, with reported mortality rates between 70-100%. The humoral immunity, especially the local intestinal IgA responses, plays an important role in the immune protection against PEDV infection. In this study, we evaluated the isotype antibody responses against the PEDV nucleocapsid (N) protein and the spike (S) protein subunits 1 (S1) and 2 (S2) in the serum and intestine of piglets. We also determined its serum neutralizing activity against the PEDV field strain HBMC2012 in 21-day-old piglets. Enzyme-linked immunosorbent assays (ELISA) revealed that the production of IgM against the N protein and S1 subunit was higher compared to the S2 subunit. The anti-S2 IgA antibodies were higher than the anti-N protein and anti-S1 IgA at 3 days post-infection (dpi). The specific IgA responses to the S2 subunit were higher than the responses observed in S1. The specific IgG responses against S1 and S2 subunits exceeded those of N protein. The serum neutralizing activities against PEDV were relatively low with a tendency to decline over time. No isotype-specific antibodies were found in the intestinal contents from infected pigs, except the one with weak IgA responses against N protein at 28 dpi. Immunohistochemical staining showed that a few IgM, IgA, and IgG antibody-secreting cells were mainly located in the mucosa of the duodenum and ileum of PEDV-infected pigs at 3 dpi. This study suggests poor systemic and intestinal isotype-specific antibody responses, especially those of IgA, and weak serum neutralizing activities against the field PEDV strain in piglets.


Assuntos
Anticorpos Antivirais/sangue , Infecções por Coronavirus/veterinária , Imunidade Humoral , Vírus da Diarreia Epidêmica Suína/imunologia , Doenças dos Suínos/imunologia , Animais , Anticorpos Neutralizantes/sangue , Infecções por Coronavirus/imunologia , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Intestinos/imunologia , Intestinos/virologia , Vírus da Diarreia Epidêmica Suína/genética , Suínos/imunologia , Suínos/virologia , Doenças dos Suínos/virologia , Eliminação de Partículas Virais
8.
Nat Biotechnol ; 38(2): 169-175, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31873216

RESUMO

Widespread use of gene therapy technologies is limited in part by the lack of small genetic switches with wide dynamic ranges that control transgene expression without the requirement of additional protein components1-5. In this study, we engineered a class of type III hammerhead ribozymes to develop RNA switches that are highly efficient at cis-cleaving mammalian mRNAs and showed that they can be tightly regulated by a steric-blocking antisense oligonucleotide. Our variant ribozymes enabled in vivo regulation of adeno-associated virus (AAV)-delivered transgenes, allowing dose-dependent and up to 223-fold regulation of protein expression over at least 43 weeks. To test the potential of these reversible on-switches in gene therapy for anemia of chronic kidney disease6, we demonstrated regulated expression of physiological levels of erythropoietin with a well-tolerated dose of the inducer oligonucleotide. These small, modular and efficient RNA switches may improve the safety and efficacy of gene therapies and broaden their use.


Assuntos
Dependovirus/genética , Regulação da Expressão Gênica , Terapia Genética , RNA/genética , Animais , Linhagem Celular , Feminino , Genes Reporter , Humanos , Masculino , Camundongos Endogâmicos BALB C , Oligonucleotídeos Antissenso/metabolismo , RNA Catalítico/química , RNA Catalítico/genética , Transgenes
9.
Drug Des Devel Ther ; 13: 2195-2204, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31308631

RESUMO

PURPOSES: Osteoarthritis (OA) is a common joint disease characterized by the degradation of articular cartilage and joint inflammation. Interleukin-1ß induces P38/cAMP response element binding protein (CREB) pathway activation, resulting in increased expression of matrix metallopeptidase-13 (MMP13) in chondrocytes. However, the role of the P38/CREB/MMP13 axis is unclear in the progression of OA. In this study, we aimed to answer the following questions: (1) how does the P38/CREB/MMP13 axis in cartilage from patients with OA compare with control specimens? (2) Can the P38 agonist anisomycin (ANS) induce mouse OA? MATERIALS AND METHODS: Surgical specimens of human cartilage were divided into OA and control groups. Surgical specimens of mouse cartilage were divided into control and ANS-induced groups. Safranin O staining of the cartilage tissues was performed to evaluate the extracellular matrix. Reverse transcription-polymerase chain reaction was performed using these tissues to investigate messenger RNA expressions of type II collagen, aggrecan, MMP13, and ADAM metallopeptidase with thrombospondin type 1 motif 5. Phosphorylated (p)-P38, p-CREB, and MMP13 were evaluated by Western blot analysis. Anisomycin was used to activate P38, and p-P38, p-CREB, and MMP13 were evaluated by immunofluorescence and Western blot analysis. RESULTS: Safranin O staining showed that the extracellular matrix degraded in humans with OA and ANS-induced mouse cartilage samples. The expressions of p-P38, p-CREB, and MMP13 were all upregulated in osteoarthritic cartilage or anisomycin-induced chondrocytes, suggesting that the P38/CREB/MMP13 axis may play a role in the progression of OA. CONCLUSIONS: The P38/CREB/MMP13 axis is active in osteoarthritic chondrocytes and may cause the degeneration of cartilage. Effective new therapy directed against this pathway could be developed.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Osteoartrite/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Idoso , Animais , Anisomicina/farmacologia , Cartilagem/metabolismo , Cartilagem/patologia , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Osteoartrite/patologia , Fosforilação/efeitos dos fármacos
10.
Living Rev Sol Phys ; 16(1): 3, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178676

RESUMO

Strong solar flares and coronal mass ejections, here defined not only as the bursts of electromagnetic radiation but as the entire process in which magnetic energy is released through magnetic reconnection and plasma instability, emanate from active regions (ARs) in which high magnetic non-potentiality resides in a wide variety of forms. This review focuses on the formation and evolution of flare-productive ARs from both observational and theoretical points of view. Starting from a general introduction of the genesis of ARs and solar flares, we give an overview of the key observational features during the long-term evolution in the pre-flare state, the rapid changes in the magnetic field associated with the flare occurrence, and the physical mechanisms behind these phenomena. Our picture of flare-productive ARs is summarized as follows: subject to the turbulent convection, the rising magnetic flux in the interior deforms into a complex structure and gains high non-potentiality; as the flux appears on the surface, an AR with large free magnetic energy and helicity is built, which is represented by δ -sunspots, sheared polarity inversion lines, magnetic flux ropes, etc; the flare occurs when sufficient magnetic energy has accumulated, and the drastic coronal evolution affects magnetic fields even in the photosphere. We show that the improvement of observational instruments and modeling capabilities has significantly advanced our understanding in the last decades. Finally, we discuss the outstanding issues and future perspective and further broaden our scope to the possible applications of our knowledge to space-weather forecasting, extreme events in history, and corresponding stellar activities.

11.
JMIR Mhealth Uhealth ; 7(1): e10664, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30609983

RESUMO

BACKGROUND: Previous studies on telemedicine interventions have shown that older diabetic patients experience difficulty in using computers, which is a barrier to remote communication between medical teams and older diabetic patients. However, older people in China tend to find it easy to use mobile phones and personal messaging apps that have a user-friendly interface. Therefore, we designed a mobile health (mHealth) system for older people with diabetes that is based on mobile phones, has a streamlined operation interface, and incorporates maximum automation. OBJECTIVE: The goal of the research was to investigate the use of mobile phone-based telemedicine apps for management of older Chinese patients with type 2 diabetes mellitus (T2DM). Variables of interest included efficacy and safety. METHODS: A total of 91 older (aged over 65 years) patients with T2DM who presented to our department were randomly assigned to one of two groups. Patients in the intervention group (n=44) were provided glucometers capable of data transmission and received advice pertaining to medication, diet, and exercise via the mHealth telemedicine system. Patients assigned to the control group (n=47) received routine outpatient care with no additional intervention. Patients in both groups were followed up at regular 3-month intervals. RESULTS: After 3 months, patients in the intervention group showed significant (P<.05) improvement in postprandial plasma glucose level. After 6 months, patients in the intervention group exhibited a decreasing trend in postprandial plasma glucose and glycated hemoglobin levels compared with the baseline and those in the control group (P<.05). CONCLUSIONS: Mobile phone-based telemedicine apps help improve glycemic control in older Chinese patients with T2DM. TRIAL REGISTRATION: China Clinical Trial Registration Center ChiCTR 1800015214; http://www.chictr.org.cn/showprojen.aspx?proj=25949 (Archived by WebCite at http://www.webcitation.org/73wKj1GMq).


Assuntos
Telefone Celular/normas , Diabetes Mellitus Tipo 2/terapia , Telemedicina/normas , Idoso , Idoso de 80 Anos ou mais , Automonitorização da Glicemia/métodos , Automonitorização da Glicemia/normas , Automonitorização da Glicemia/estatística & dados numéricos , Telefone Celular/estatística & dados numéricos , China , Diabetes Mellitus Tipo 2/psicologia , Feminino , Humanos , Masculino , Aplicativos Móveis/normas , Aplicativos Móveis/estatística & dados numéricos , Telemedicina/métodos , Telemedicina/estatística & dados numéricos
12.
Mol Ther ; 26(5): 1277-1286, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29567311

RESUMO

RNA switches that modulate gene expression with small molecules have a number of scientific and clinical applications. Here, we describe a novel class of small regulatory on switches based on the ability of a ligand-bound aptamer to promote stem formation between a microRNA target sequence (miR-T) and a complementary competing strand. Two on switch architectures employing this basic concept were evaluated, differing in the location of a tetracycline aptamer and the region of a miR-21 target sequence (miR-21-T) masked by its competing strand. Further optimizations of miR-21-T and its competing strand resulted in tetracycline-regulated on switches that induced luciferase expression by 19-fold in HeLa cells. A similar switch design based on miR-122-T afforded 7-fold regulation when placed in tandem, indicating that this approach can be extended to additional miR-T. Optimized on switches introduced into adeno-associated virus (AAV) vectors afforded 10-fold regulation of two antiviral proteins in AAV-transduced cells. Our data demonstrate that small-molecule-induced occlusion of a miR-T can be used to conditionally regulate gene expression in mammalian cells and suggest that regulatory switches built on this principle can be used to dose expression of an AAV transgene.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/genética , Interferência de RNA , RNA Mensageiro/genética , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Aptâmeros de Nucleotídeos , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Dependovirus/genética , Vetores Genéticos/genética , Humanos , Ligantes , Riboswitch , Técnica de Seleção de Aptâmeros , Transgenes
13.
Nat Commun ; 9(1): 46, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29298973

RESUMO

As one of the most violent eruptions on the Sun, flares are believed to be powered by magnetic reconnection. The fundamental physics involving the release, transfer, and deposition of energy have been studied extensively. Taking advantage of the unprecedented resolution provided by the 1.6 m Goode Solar Telescope, here, we show a sudden rotation of vector magnetic fields, about 12-20° counterclockwise, associated with a flare. Unlike the permanent changes reported previously, the azimuth-angle change is transient and cospatial/temporal with Hα emission. The measured azimuth angle becomes closer to that in potential fields suggesting untwist of flare loops. The magnetograms were obtained in the near infrared at 1.56 µm, which is minimally affected by flare emission and no intensity profile change was detected. We believe that these transient changes are real and discuss the possible explanations in which the high-energy electron beams or Alfve'n waves play a crucial role.

14.
Nat Chem Biol ; 13(8): 839-841, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28628097

RESUMO

Cpf1 is a CRISPR effector protein that has greater specificity than Streptococcus pyogenes Cas9 (SpCas9) in genome-editing applications. Here we show that Lachnospiraceae bacterium (Lb) and Acidaminococus sp. (As) Cpf1 orthologs have RNase activities that can excise multiple CRISPR RNAs (crRNAs) from a single RNA polymerase II-driven RNA transcript expressed in mammalian cells. This property simplifies modification of multiple genomic targets and can be used to increase the efficiency of Cpf1-mediated editing.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , RNA Mensageiro/genética , Transcrição Gênica/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/química , Células Cultivadas , Clostridiales/química , Células HEK293 , Humanos
15.
Elife ; 52016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27805569

RESUMO

Efforts to control mammalian gene expression with ligand-responsive riboswitches have been hindered by lack of a general method for generating efficient switches in mammalian systems. Here we describe a rational-design approach that enables rapid development of efficient cis-acting aptazyme riboswitches. We identified communication-module characteristics associated with aptazyme functionality through analysis of a 32-aptazyme test panel. We then developed a scoring system that predicts an aptazymes's activity by integrating three characteristics of communication-module bases: hydrogen bonding, base stacking, and distance to the enzymatic core. We validated the power and generality of this approach by designing aptazymes responsive to three distinct ligands, each with markedly wider dynamic ranges than any previously reported. These aptayzmes efficiently regulated adeno-associated virus (AAV)-vectored transgene expression in cultured mammalian cells and mice, highlighting one application of these broadly usable regulatory switches. Our approach enables efficient, protein-independent control of gene expression by a range of small molecules.


Assuntos
Regulação da Expressão Gênica/genética , RNA Catalítico/genética , Riboswitch/genética , Animais , Dependovirus/genética , Células HeLa , Humanos , Ligação de Hidrogênio , Ligantes , Camundongos , Conformação de Ácido Nucleico , RNA Catalítico/química , Transgenes/genética
16.
Nat Commun ; 7: 13104, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27721463

RESUMO

Sunspots are concentrations of magnetic field visible on the solar surface (photosphere). It was considered implausible that solar flares, as resulted from magnetic reconnection in the tenuous corona, would cause a direct perturbation of the dense photosphere involving bulk motion. Here we report the sudden flare-induced rotation of a sunspot using the unprecedented spatiotemporal resolution of the 1.6 m New Solar Telescope, supplemented by magnetic data from the Solar Dynamics Observatory. It is clearly observed that the rotation is non-uniform over the sunspot: as the flare ribbon sweeps across, its different portions accelerate (up to ∼50° h-1) at different times corresponding to peaks of flare hard X-ray emission. The rotation may be driven by the surface Lorentz-force change due to the back reaction of coronal magnetic restructuring and is accompanied by a downward Poynting flux. These results have direct consequences for our understanding of energy and momentum transportation in the flare-related phenomena.

17.
Sci Rep ; 6: 24319, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27071459

RESUMO

Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6 m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere's response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80-200 km, well below the resolution of most current instruments used for flare studies. Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics.

18.
Nat Commun ; 6: 7008, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25919706

RESUMO

Magnetic flux ropes are highly twisted, current-carrying magnetic fields. They are crucial for the instability of plasma involved in solar eruptions, which may lead to adverse space weather effects. Here we present observations of a flaring using the highest resolution chromospheric images from the 1.6-m New Solar Telescope at Big Bear Solar Observatory, supplemented by a magnetic field extrapolation model. A set of loops initially appear to peel off from an overall inverse S-shaped flux bundle, and then develop into a multi-stranded twisted flux rope, producing a two-ribbon flare. We show evidence that the flux rope is embedded in sheared arcades and becomes unstable following the enhancement of its twists. The subsequent motion of the flux rope is confined due to the strong strapping effect of the overlying field. These results provide a first opportunity to witness the detailed structure and evolution of flux ropes in the low solar atmosphere.

19.
J Virol ; 88(1): 237-48, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24155382

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV) is a novel phlebovirus in the Bunyaviridae family. Most patients infected by SFTSV present with fever and thrombocytopenia, and up to 30% die due to multiple-organ dysfunction. The mechanisms by which SFTSV enters multiple cell types are unknown. SFTSV contains two species of envelope glycoproteins, Gn (44.2 kDa) and Gc (56 kDa), both of which are encoded by the M segment and are cleaved from a precursor polypeptide (about 116 kDa) in the endoplasmic reticulum (ER). Gn fused with an immunoglobulin Fc tag at its C terminus (Gn-Fc) bound to multiple cells susceptible to the infection of SFTSV and blocked viral infection of human umbilical vein endothelial cells (HUVECs). Immunoprecipitation assays following mass spectrometry analysis showed that Gn binds to nonmuscle myosin heavy chain IIA (NMMHC-IIA), a cellular protein with surface expression in multiple cell types. Small interfering RNA (siRNA) knockdown of NMMHC-IIA, but not the closely related NMMHC-IIB or NMMHC-IIC, reduced SFTSV infection, and NMMHC-IIA specific antibody blocked infection by SFTSV but not other control viruses. Overexpression of NMMHC-IIA in HeLa cells, which show limited susceptivity to SFTSV, markedly enhanced SFTSV infection of the cells. These results show that NMMHC-IIA is critical for the cellular entry of SFTSV. As NMMHC-IIA is essential for the normal functions of platelets and human vascular endothelial cells, it is conceivable that NMMHC-IIA directly contributes to the pathogenesis of SFTSV and may be a useful target for antiviral interventions against the viral infection.


Assuntos
Febre/virologia , Cadeias Pesadas de Miosina/fisiologia , Phlebovirus/patogenicidade , Trombocitopenia/virologia , Animais , Sequência de Bases , Western Blotting , Linhagem Celular , Primers do DNA , Humanos , Microscopia Confocal , Cadeias Pesadas de Miosina/genética , Reação em Cadeia da Polimerase , RNA Interferente Pequeno/genética
20.
J Virol ; 87(12): 7176-84, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23596296

RESUMO

Primary Tupaia hepatocytes (PTHs) are susceptible to woolly monkey hepatitis B virus (WMHBV) infection, but the identity of the cellular receptor(s) mediating WMHBV infection of PTHs remains unclear. Recently, sodium taurocholate cotransporting polypeptide (NTCP) was identified as a functional receptor for human hepatitis B virus (HBV) infection of primary human and Tupaia hepatocytes. In this study, a synthetic pre-S1 peptide from WMHBV was found to bind specifically to cells expressing Tupaia NTCP (tsNTCP) and it efficiently blocked WMHBV entry into PTHs; silencing of tsNTCP in PTHs significantly inhibited WMHBV infection. Ectopic expression of tsNTCP rendered HepG2 cells susceptible to WMHBV infection. These data demonstrate that tsNTCP is a functional receptor for WMHBV infection of PTHs. The result also indicates that NTCP's orthologs likely act as a common cellular receptor for all known primate hepadnaviruses.


Assuntos
Atelinae/virologia , Hepadnaviridae/patogenicidade , Hepatócitos/virologia , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Receptores Virais/metabolismo , Simportadores/metabolismo , Tupaia/virologia , Sequência de Aminoácidos , Animais , Células Cultivadas , Hepadnaviridae/genética , Hepadnaviridae/metabolismo , Infecções por Hepadnaviridae/virologia , Antígenos de Superfície da Hepatite B/química , Antígenos de Superfície da Hepatite B/genética , Antígenos de Superfície da Hepatite B/metabolismo , Humanos , Dados de Sequência Molecular , Precursores de Proteínas/química , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA