Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Aging (Albany NY) ; 15(12): 5798-5825, 2023 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-37367937

RESUMO

BACKGROUND: TRIM family molecules have been identified as being involved in the tumor progression of various cancer types. Increasingly, experimental evidence indicates that some of TRIM family molecules are implicated in glioma tumorigenesis. However, the diverse genomic changes, prognostic values and immunological landscapes of TRIM family of molecules have yet to be fully determined in glioma. METHODS: In our study, employing the comprehensive bioinformatics tools, we evaluated the unique functions of 8 TRIM members including TRIM5/17/21/22/24/28/34/47 in gliomas. RESULTS: The expression levels of 7 TRIM members (TRIM5/21/22/24/28/34/47) were higher in glioma as well as its diverse cancer subtypes than in normal tissues, whereas the expression level of TRIM17 was the opposite, lower in the former than in the latter. In addition, survival analysis revealed that the high expression profiles of TRIM5/21/22/24/28/34/47 were associated with poor overall survival (OS), disease-specific survival (DSS) and progress-free interval (PFI) in glioma patients, whereas TRIM17 displayed adverse outcomes. Moreover, the 8 TRIM molecules expression as well as methylation profiles remarkably correlated with different WHO grades. And genetic alterations, including mutations and copy number alterations (CNAs), in the TRIM family were correlated with longer OS, DSS and progress-free survival (PFS) in glioma patients. Furthermore, through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis results of these 8 molecules and their related genes, we found that these molecules may change the immune infiltration of the tumor microenvironment and regulate the expression of immune checkpoint molecules (ICMs), affecting the occurrence and development of gliomas. The correlation analyses between the 8 TRIM molecules and TMB (tumor mutational burden)/MSI (microsatellite instability)/ICMs discovered that as the expression level of TRIM5/21/22/24/28/34/47 increased, the TMB score also increased significantly, while TRIM17 showed an opposite outcome. Further, a 6-gene signature (TRIM 5/17/21/28/34/47) for predicting overall survival (OS) in gliomas was built by using the least absolute shrinkage and selection operator (LASSO) regression, and the survival and time-dependent ROC analyses all were found to perform well in testing and validation cohorts. Results of multivariate COX regression analysis showed that TRIM5/28 are both expected to become independent risk predictors to guide clinical treatment. CONCLUSION: In general, the results indicate that TRIM5/17/21/22/24/28/34/47 might exert a crucial influence on gliomas tumorigenesis and might be putative prognostic markers and therapeutic targets for glioma patients.


Assuntos
Glioma , Humanos , Prognóstico , Glioma/genética , Carcinogênese , Transformação Celular Neoplásica , Biologia Computacional , Proteínas de Checkpoint Imunológico , Instabilidade de Microssatélites , Microambiente Tumoral , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética
2.
BMC Cancer ; 22(1): 1277, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36474188

RESUMO

BACKGROUND: Speckle-type POZ protein(SPOP), a substrate adaptor of Cul3 ubiquitin ligase, plays crucial roles in solid neoplasms by promoting the ubiquitination and degradation of substrates. Limited studies have shown that SPOP is overexpressed in human renal cell carcinoma (RCC) tissue. However, the exact role of SPOP in RCC remains unclear and needs to be further elucidated. The present study showed that SPOP was expressed at different levels in different RCC cell lines. The purpose of this study was to explore the roles of SPOP in the biological features of RCC cells and the expression levels of SPOP in human tissue microarray (TMA) and kidney tissues. METHODS: Here, SPOP was overexpressed by lentiviral vector transfection in ACHN and Caki-1 cells, and SPOP was knocked down in Caki-2 cells with similar transfection methods. The transfection efficiency was evaluated by quantitative PCR and western blotting analyses. The role of SPOP in the proliferation, migration, invasion and apoptosis of cell lines was determined by the MTT, wound-healing, transwell and flow cytometry assays. Moreover, the cells were treated with different drug concentrations in proliferation and apoptosis assays to investigate the effect of sunitinib and IFN-α2b on the proliferation and apoptosis of SPOP-overexpressing cells and SPOP-knockdown RCC cells. Finally, immunohistochemical staining of SPOP was performed in kidney tissues and TMAs, which included RCC tissues and corresponding adjacent normal tissues. RESULTS: Overexpression of SPOP inhibited cell proliferation, migration and invasion and increased cell apoptosis. Interestingly, sunitinib and IFN-α2b at several concentrations increased the proliferation inhibitory rate and total apoptosis rate of cells overexpressing SPOP. The findings of the present study showed that the SPOP protein was significantly expressed at low levels in most clear cell RCC (ccRCC) tissues and at relatively high levels in the majority of adjacent normal tissues and kidney tissues. Kaplan-Meier survival analysis showed that there was no statistically significant difference in cumulative survival based on the data of different SPOP expression levels in TMA and patients. CONCLUSIONS: In contrast to previous studies, our findings demonstrated that overexpression of SPOP might suppress the progression of RCC cells, which was supported by cell experiments and immunohistochemical staining. SPOP could be a potential tumour inhibitor in RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Neoplasias Renais/genética , Proteínas Nucleares/genética , Proteínas Repressoras/genética
3.
Front Genet ; 13: 967378, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36406111

RESUMO

Background: Clear cell renal cell carcinoma (ccRCC) is the most common pathological type of renal cell carcinoma. Tetratricopeptide repeat domain 21A (TTC21A), known as a component of intraflagellar transport complex A which is essential for the function of cilia, However, the role of TTC21A remains unclear in ccRCC. For the first time, we explore the role and potential mechanism of TTC21A in ccRCC based on multiple databases. Methods: TTC21A expression across all TCGA tumor was analyzed via Tumor Immune Estimation Resource (TIMER) site. The correlation between TTC21A and clinicopathologic characteristics of ccRCC was analyzed with TCGA database. The diagnostic and prognostic value of TTC21A was evaluated by receiver operation characteristic curve, Kaplan-Meier plotter and Cox regression respectively. Moreover, functional enrichment analysis of TTC21A and the co-expression genes were performed by Gene Set Enrichment Analysis. The correlation of TTC21A and immune infiltration were evaluated by single sample Gene Set Enrichment Analysis. Results: Pan-cancer analysis indicated that TTC21A was highly expressed in ccRCC and other cancer. In addition, elevated expression of TTC21A was associated with worse overall survival in ccRCC patients. Functional enrichment analysis showed that TTC21A and the co-expressed genes enriched in glucose metabolism and energy metabolism. Moreover, TTC21A expression was associated with infiltrating levels of dendritic cell, nature killer cell and other immune marker sets. Conclusion: The results of analysis indicate that expression of TTC21A is associated with poor prognosis and immune infiltrating in ccRCC, which suggested TTC21A might be used as a potential predictor and target of treatment in ccRCC.

4.
BMC Urol ; 22(1): 129, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35996134

RESUMO

BACKGROUND: As the most common malignant tumor of primary renal tumor, renal cell carcinoma (RCC) is the highly invasive disease with high mortality. AKT is a serine/threonine kinase that play a critical role in the phosphoinositide 3-kinase (PI3K) signaling pathway, and it is an attractive target for RCC treatment. The aim of present study was to investigate the effect of AKT silence on malignant behavior of renal cell carcinoma cells. METHODS: AKT expression was quantified by immunohistochemistry in tumor tissues and normal tissues. The human RCC cell lines Caki-2 cell were chosen for this study. The optimal silencing siRNA was subsequently selected by RT-qPCR and western blot. The effect of AKT silence on RCC cells was investigated by CCK8 assay, transwell assay, scratch test and flow cytometry. The AKT1 expression in human renal cell carcinoma tissue was detected by immunohistochemical staining. RESULTS: The AKT in Caki-2 cells was silenced successfully. The results shown AKT silence could inhibit cell proliferation, invasion, and, migration. In addition, AKT silence could promote Caki-2 cell apoptosis with prevention of RCC cells move from G1 phase to S phase. Immunohistochemical staining revealed significant difference of expression of AKT1 in RCC tissues and normal renal tissues. Taken together, AKT family members might involve in malignant growth of RCC, and might be a potential therapeutic target. CONCLUSION: Our data show that AKT silence inhibited cell proliferation, invasion, and, migration of Caki-2 cell, and promoted Caki-2 cell apoptosis. Moreover, AKT silence prevented RCC cells move from G1 phase to S phase. Therefore, AKT may act as an effective therapeutic target for RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Proteínas Proto-Oncogênicas c-akt , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Neoplasias Renais/patologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
5.
Front Genet ; 13: 842975, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35656324

RESUMO

Despite emerging evidence revealing the remarkable roles of protein phosphatase 1 regulatory inhibitor subunit 14A (PPP1R14A) in cancer tumorigenesis and progression, no pan-cancer analysis is available. A comprehensive investigation of the potential carcinogenic mechanism of PPP1R14A across 33 tumors using bioinformatic techniques is reported for the first time. PPP1R14A is downregulated in major malignancies, and there is a significant correlation between the PPP1R14A expression and the prognosis of patients. The high expression of PPP1R14A in most cases was associated with poor overall survival (OS), disease-specific survival (DSS), and progress-free interval (PFI) across patients with various malignant tumors, including adrenocortical carcinoma (ACC) and bladder urothelial carcinoma (BLCA), indicated through pan-cancer survival analysis. Receiver operating characteristic (ROC) analysis subsequently exhibited that the molecule has high reference significance in diagnosing a variety of cancers. The frequency of PPP1R14A genetic changes including genetic mutations and copy number alterations (CNAs) in uterine carcinosarcoma reached 16.07%, and these alterations brought misfortune to the survival and prognosis of cancer patients. In addition, methylation within the promoter region of PPP1R14A DNA was enhanced in a majority of cancers. Downregulated phosphorylation levels of phosphorylation sites including S26, T38, and others in most cases took place in several tumors, such as breast cancer and colon cancer. PPP1R14A remarkably correlated with the levels of infiltrating cells and immune checkpoint genes. Our research on the carcinogenic effect of PPP1R14A in different tumors is comprehensively summarized and analyzed and provides a theoretical basis for future therapeutic and immunotherapy strategies.

6.
Biosci Rep ; 42(1)2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-34981809

RESUMO

Alzheimer's disease (AD) is a form of neurodegenerative disease in the elderly with no cure at present. In a previous study, we found that the scaffold protein, disrupted in Schizophrenia 1 (DISC1) is down-regulated in the AD brains, and ectopic expression of DISC1 can delay the progression of AD by protecting synaptic plasticity and down-regulating BACE1. However, the underlying mechanisms remain not to be elucidated. In the present study, we compared the proteomes of normal and DISC1high AD cells expressing the amyloid precursor protein (APP) using isobaric tag for relative and absolute quantitation (iTRAQ) and mass spectrometry (MS). The differentially expressed proteins (DEPs) were identified, and the protein-protein interaction (PPI) network was constructed to identify the interacting partners of DISC1. Based on the interaction scores, NDE1, GRM3, PTGER3 and KATNA1 were identified as functionally or physically related to DISC1, and may therefore regulate AD development. The DEPs were functionally annotated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases with the DAVID software, and the Non-supervised Orthologous Groups (eggNOG) database was used to determine their evolutionary relationships. The DEPs were significantly enriched in microtubules and mitochondria-related pathways. Gene set enrichment analysis (GSEA) was performed to identify genes and pathways that are activated when DISC1 is overexpressed. Our findings provide novel insights into the regulatory mechanisms underlying DISC1 function in AD.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteoma , Proteômica , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Encéfalo/patologia , Predisposição Genética para Doença , Células HEK293 , Humanos , Katanina/genética , Katanina/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/genética , Fenótipo , Mapas de Interação de Proteínas , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Prostaglandina E Subtipo EP3/genética , Receptores de Prostaglandina E Subtipo EP3/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
7.
BMC Cancer ; 21(1): 723, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162355

RESUMO

BACKGROUND: Tyrosine protein tyrosine kinase binding protein (TYROBP) binds non-covalently to activated receptors on the surface of various immune cells, and mediates signal transduction and cellular activation. It is dysregulated in various malignancies, although little is known regarding its role in low-grade glioma. The aim of this study is to explore the clinicopathological significance, prognostic value and immune signature of TYROBP expression in low-grade glioma (LGG). METHODS: The differentially expressed genes (DEGs) between glioma samples and normal tissues were identified from two GEO microarray datasets using the limma package. The DEGs overlapping across both datasets were functionally annotated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. STRING database was used to establish the protein-protein interaction (PPI) of the DEGs. The PPI network was visualized by Cytoscape and cytoHubba, and the core module and hub genes were identified. The expression profile of TYROBP and patient survival were validated in the Oncomine, GEPIA2 and CGGA databases. The correlation between TYROBP expression and the clinicopathologic characteristics were evaluated. Gene Set Enrichment Analysis (GSEA) and single-sample GSEA (ssGSEA) were performed by R based on the LGG data from TCGA. The TIMER2.0 database was used to determine the correlation between TYROBP expression and tumor immune infiltrating cells in the LGG patients. Univariate and multivariate Cox regression analyses were performed to determine the prognostic impact of clinicopathological factors via TCGA database. RESULTS: Sixty-two overlapping DEGs were identified in the 2 datasets, and were mainly enriched in the response to wounding, focal adhesion, GTPase activity and Parkinson disease pathways. TYROBP was identified through the PPI network and cytoHubba. TYROBP expression levels were significantly higher in the LGG tissues compared to the normal tissues, and was associated with worse prognosis and poor clinicopathological parameters. In addition, GSEA showed that TYROBP was positively correlated to neutrophil chemotaxis, macrophage activation, chemokine signaling pathway, JAK-STAT signaling pathway, and negatively associated with gamma aminobutyric acid signaling pathway, neurotransmitter transport, neuroactive ligand receptor intersection etc. TIMER2.0 and ssGSEA showed that TYROBP expression was significantly associated with the infiltration of neutrophils, macrophages, myeloid dendritic cells and monocytes. The infiltration of the M2 phenotype macrophages, cancer-associated fibroblasts and myeloid dendritic cells correlated to worse prognosis in LGG patients. Finally, multivariate analysis showed that elevated TYROBP expression is an independent risk factor for LGG. CONCLUSION: TYROBP is dysregulated in LGG and correlates with immune infiltration. It is a potential therapeutic target and prognostic marker for LGG.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias Encefálicas/genética , Glioma/genética , Proteínas de Membrana/metabolismo , Adulto , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Glioma/mortalidade , Glioma/patologia , Humanos , Pessoa de Meia-Idade , Gradação de Tumores , Prognóstico , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA