Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
J Environ Sci (China) ; 148: 502-514, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095184

RESUMO

Objective weather classification methods have been extensively applied to identify dominant ozone-favorable synoptic weather patterns (SWPs), however, the consistency of different classification methods is rarely examined. In this study, we apply two widely-used objective methods, the self-organizing map (SOM) and K-means clustering analysis, to derive ozone-favorable SWPs at four Chinese megacities in 2015-2022. We find that the two algorithms are largely consistent in recognizing dominant ozone-favorable SWPs for four Chinese megacities. In the case of classifying six SWPs, the derived circulation fields are highly similar with a spatial correlation of 0.99 between the two methods, and the difference in the mean frequency of each SWP is less than 7%. The six dominant ozone-favorable SWPs in Guangzhou are all characterized by anomaly higher radiation and temperature, lower cloud cover, relative humidity, and wind speed, and stronger subsidence compared to climatology mean. We find that during 2015-2022, the occurrence of ozone-favorable SWPs days increases significantly at a rate of 3.2 day/year, faster than the increases in the ozone exceedance days (3.0 day/year). The interannual variability between the occurrence of ozone-favorable SWPs and ozone exceedance days are generally consistent with a temporal correlation coefficient of 0.6. In particular, the significant increase in ozone-favorable SWPs in 2022, especially the Subtropical High type which typically occurs in September, is consistent with a long-lasting ozone pollution episode in Guangzhou during September 2022. Our results thus reveal that enhanced frequency of ozone-favorable SWPs plays an important role in the observed 2015-2022 ozone increase in Guangzhou.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Ozônio , Tempo (Meteorologia) , Ozônio/análise , China , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos
2.
Sci Total Environ ; : 177184, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39454773

RESUMO

PM2.5 bound mercury (PBM2.5) in the atmosphere is a major component of total mercury, which is a pollutant of global concern and a potent neurotoxicant when converted to methylmercury. Despite its importance, comprehensive macroanalyses of PBM2.5 on large scales are still lacking. To explore the driving factors, spatiotemporal pollution distribution, and associated health risks, we compiled a comprehensive dataset consisting of PBM2.5 concentrations and spatiotemporal information across China from 2000 to 2023 that was collected from the published scientific literature with valid data. By incorporating corresponding multidimensional predicting variables, the best-fitted random forest model was applied to predict PBM2.5 concentrations with a high spatial resolution of 0.25°â€¯× 0.25°, and the health risk assessment model was used for subsequent health risk assessment. Our results indicated that population density and PM2.5 emissions from power generation were the main contributors to PBM2.5 concentrations. In 2020, the pollution was primarily concentrated in northern, central, and eastern China, with the highest annual average concentration of 815.91 pg/m3 in Shanghai. Beijing experienced the most significant seasonal increase, with PBM2.5 concentrations rising by 146.92 % from summer to winter. Nationally, the annual average PBM2.5 pollution decreased extensively and markedly from 2015 to 2020. The non-carcinogenic risk of PBM2.5 alone was negligible in 2020, with HQ values generally <0.02 in winter. This study may provide an important assessment of the effectiveness of China's measures against mercury pollution and offer valuable insights for future prevention and control of PBM2.5 pollution.

3.
Adv Mater ; : e2410094, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39361264

RESUMO

Stimuli-responsive circularly polarized luminescent (CPL) materials are expected to find widespread application in advanced information technologies, such as 3D displays, multilevel encryption, and chiral optical devices. Here, using R-/S-α-phenylethylamine and 3,4,9,10-perylenetetracarboxylic dianhydride as precursors, chiral carbon dots (Ch-CDs) exhibiting bright concentration-dependent luminescence are synthesized, demonstrating reversible responses in both their morphologies and emission spectra. By adjusting Ch-CD concentration, the switchable wavelength is extended over 180 nm (539-720 nm), with the maximum quantum efficiency reaching 100%. Meanwhile, upon increasing Ch-CD concentration, the emission wavelength red-shifts, while the chirality of the assembled nanoribbons is synchronously amplified, ultimately achieving CPL at 709 nm and a maximum luminescence asymmetry factor of 2.18 × 10-2. These values represent the longest wavelength and the largest glum reported for CDs. Considering the remarkable optical properties of the synthesized Ch-CDs, multilevel chiral logic gates are designed, and their potential practical applications are demonstrated in multilevel anti-counterfeiting encryption, flexible electronic printing, and solid-state CPL. Furthermore, deep-red chiral electroluminescence light-emitting diodes (EL-LEDs) are prepared using these Ch-CDs, achieving an external quantum efficiency of 1.98%, which is the highest value reported to date for CDs in deep-red EL-LEDs, and the first report of chiral electronic devices based on CDs.

4.
Artigo em Inglês | MEDLINE | ID: mdl-39363510

RESUMO

Single-cell transcriptome sequencing technology has been applied to decode the cell types and functional states of immune cells, revealing their tissue-specific gene expression patterns and functions in cancer immunity. Comprehensive assessments of immune cells within and across tissues will provide us with a deeper understanding of the tumor immune system in general. Here, we present Cross-tissue Immune cell type or state Enrichment analysis of gene lists for Cancer (CIEC), the first web-based application that integrates database and enrichment analysis to estimate the cross-tissue immune cell type or state. CIEC version 1.0 consists of 480 samples covering primary tumor, adjacent normal tissue, lymph node, metastasis tissue, and peripheral blood from 323 cancer patients. By applying integrative analysis, we constructed an immune cell-type/state map for each context and adopted our previously developed Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology Based Annotation System (KOBAS) algorithm to estimate the enrichment for context-specific immune cell type/state. In addition, CIEC also provides an easy-to-use online interface for users to comprehensively analyze the immune cell characteristics mapped across multiple tissues, including expression map, correlation, similar genes detection, signature score, and expression comparison. We believe that CIEC will be a valuable resource for exploring the intrinsic characteristics of immune cells in cancer patients and for potentially guiding novel cancer-immune biomarker development and immunotherapy strategies. CIEC is freely accessible at http://ciec.gene.ac/.

5.
Adv Sci (Weinh) ; : e2409312, 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39429215

RESUMO

Antimony sulfide (Sb2S3) has attracted much attention due to its great prospect to construct highly efficient, cost-effective, and environment-friendly solar cells. The scalable close-spaced sublimation (CSS) is a well-developed physical deposition method to fabricate thin films for photovoltaics. However, the CSS-processed absorber films typically involve small grain size with high-density grain boundaries (GBs), resulting in severe defects-induced charge-carrier nonradiative recombination and further large open-circuit voltage (VOC) losses. In this work, it is demonstrated that a chemical bath deposited-Sb2S3 seed layer can serve as crystal nuclei and mediate the growth of large-grained, highly compact CSS-processed Sb2S3 films. This seed-mediated Sb2S3 film affords reduced defect density and enhanced charge-carrier transport, which yields an improved power conversion efficiency (PCE) of 4.78% for planar Sb2S3 solar cells. Moreover, the VOC of 0.755 V that is obtained is the highest reported thus far for vacuum-based evaporation and sublimation processed Sb2S3 devices. This work demonstrates an effective strategy to deposit high-quality low-defect-density Sb2S3 films via vacuum-based physical methods for optoelectronic applications.

6.
Adv Mater ; : e2410669, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39328030

RESUMO

An effective defect passivation strategy is crucial for enhancing the performance of antimony selenosulfide (Sb2(S,Se)3) solar cells, as it significantly influences charge transport and extraction efficiency. Herein, a convenient and novel in situ passivation (ISP) technique is successfully introduced to enhance the performance of Sb2(S,Se)3 solar cells, achieving a champion efficiency of 10.81%, which is among the highest recorded for Sb2(S,Se)3 solar cells to date. The first principles calculations and the experimental data reveal that incorporating sodium selenosulfate in the ISP strategy effectively functions as an in situ selenization, effectively passivating deep-level cation antisite SbSe defect within the Sb2(S,Se)3 films and significantly suppressing non-radiative recombination in the devices. Space-charge-limited current (SCLC), photoluminescence (PL), and transient absorption spectroscopy (TAS) measurements verify the high quality of the passivated films, showing fewer traps and defects. Moreover, the ISP strategy improved the overall quality of the Sb2(S,Se)3 films, and fine-tuned the energy levels, thereby facilitating enhanced carrier transport. This study thus provides a straightforward and effective method for passivating deep-level defects in Sb2(S,Se)3 solar cells.

7.
Angew Chem Int Ed Engl ; : e202410988, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283269

RESUMO

Circularly polarized luminescence (CPL) is widely applied in optical data storage, quantum computing and backlights in three-dimensional (3D) displays. Carbon dots (CDs) exhibit competitive optical properties, in addition to excellent resistance to photo- and chemical-bleaching after carbonization. Combining the superior optical performance with polarization peculiarities through hierarchical structure engineering is imperative for the development of CDs. Here, oriented assembly was driven by hydrophobic interactions of aromatic ligands, which participated in the surface-ligand post-modification process on ground-state chiral carbon core. Furthermore, the residual chiral amides on CDs formed multi-hydrogen bonds during gradual aggregation, causing the assembled materials to form asymmetric bending structure. Superficial ligands interfered with optical dynamics of exciton radiation transition and promoted the excited state of the assembled materials to achieve a circularly polarized signal. The linkage ligands successfully overcame the frequent phenomenon of aggregation-induced quenching and contributed further to the formation of self-supporting films by assembly and facilitated chiral optical expression. The full-color and white CPL were manipulated by simply regulating the functional groups on the ligands. Finally, based on the stable chiral powder phosphors, large chiral flexible films and multicolor chiral light-emitting diodes were constructed which provide feasible materials and technical support for flexible 3D displays.

8.
Hellenic J Cardiol ; 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39128707

RESUMO

OBJECTIVE: This study aimed to leverage real-world electronic medical record data to develop interpretable machine learning models for diagnosis of Kawasaki disease while also exploring and prioritizing the significant risk factors. METHODS: A comprehensive study was conducted on 4087 pediatric patients at the Children's Hospital of Chongqing, China. The study collected demographic data, physical examination results, and laboratory findings. Statistical analyses were performed using IBM SPSS Statistics, Version 26.0. The optimal feature subset was used to develop intelligent diagnostic prediction models based on the Light Gradient Boosting Machine, Explainable Boosting Machine (EBM), Gradient Boosting Classifier (GBC), Fast Interpretable Greedy-Tree Sums, Decision Tree, AdaBoost Classifier, and Logistic Regression. Model performance was evaluated in three dimensions: discriminative ability via receiver operating characteristic curves, calibration accuracy using calibration curves, and interpretability through SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Model-Agnostic Explanations). RESULTS: In this study, Kawasaki disease was diagnosed in 2971 participants. Analysis was conducted on 31 indicators, including red blood cell distribution width and erythrocyte sedimentation rate. The EBM model demonstrated superior performance relative to other models, with an area under the curve of 0.97, second only to the GBC model. Furthermore, the EBM model exhibited the highest calibration accuracy and maintained its interpretability without relying on external analytical tools such as SHAP and LIME, thus reducing interpretation biases. Platelet distribution width, total protein, and erythrocyte sedimentation rate were identified by the model as significant predictors for the diagnosis of Kawasaki disease. CONCLUSION: This study used diverse machine learning models for early diagnosis of Kawasaki disease. The findings demonstrated that interpretable models such as EBM outperformed traditional machine learning models in terms of both interpretability and performance. Ensuring consistency between predictive models and clinical evidence is crucial for the successful integration of artificial intelligence into real-world clinical practice.

10.
J Fungi (Basel) ; 10(7)2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39057388

RESUMO

Selenium-enriched Lentinus edodes (SL) is a kind of edible fungi rich in organic selenium and nutrients. Monascus purpureus with high monacolin K (MK) production and Saccharomyces cerevisiae were selected as the fermentation strains. A single-factor experiment and response surface methodology were conducted to optimize the production conditions for MK with higher contents from selenium-enriched Lentinus edodes fermentation (SLF). Furthermore, we investigated the nutritional components, antioxidant capacities, and volatile organic compounds (VOCs) of SLF. The MK content in the fermentation was 2.42 mg/g under optimal fermentation conditions. The organic selenium content of SLF was 7.22 mg/kg, accounting for 98% of the total selenium content. Moreover, the contents of total sugars, proteins, amino acids, reducing sugars, crude fiber, fat, and ash in SLF were increased by 9%, 23%, 23%, 94%, 38%, 44%, and 25%, respectively. The antioxidant test results demonstrated that 1.0 mg/mL of SLF exhibited scavenging capacities of 40%, 70%, and 79% for DPPH, ABTS, and hydroxyl radicals, respectively. Using gas chromatography-ion mobility spectrometry technology, 34 unique VOCs were identified in SLF, with esters, alcohols, and ketones being the main components of its aroma. This study showed that fungal fermentation provides a theoretical reference for enhancing the nutritional value of SL.

11.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39000597

RESUMO

Drosophila spermatogenesis involves the renewal of germline stem cells, meiosis of spermatocytes, and morphological transformation of spermatids into mature sperm. We previously demonstrated that Ocnus (ocn) plays an essential role in spermatogenesis. The ValRS-m (Valyl-tRNA synthetase, mitochondrial) gene was down-regulated in ocn RNAi testes. Here, we found that ValRS-m-knockdown induced complete sterility in male flies. The depletion of ValRS-m blocked mitochondrial behavior and ATP synthesis, thus inhibiting the transition from spermatogonia to spermatocytes, and eventually, inducing the accumulation of spermatogonia during spermatogenesis. To understand the intrinsic reason for this, we further conducted transcriptome-sequencing analysis for control and ValRS-m-knockdown testes. The differentially expressed genes (DEGs) between these two groups were selected with a fold change of ≥2 or ≤1/2. Compared with the control group, 4725 genes were down-regulated (dDEGs) and 2985 genes were up-regulated (uDEGs) in the ValRS-m RNAi group. The dDEGs were mainly concentrated in the glycolytic pathway and pyruvate metabolic pathway, and the uDEGs were primarily related to ribosomal biogenesis. A total of 28 DEGs associated with mitochondria and 6 meiosis-related genes were verified to be suppressed when ValRS-m was deficient. Overall, these results suggest that ValRS-m plays a wide and vital role in mitochondrial behavior and spermatogonia differentiation in Drosophila.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Infertilidade Masculina , Espermatogênese , Animais , Masculino , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/deficiência , Espermatogênese/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Testículo/metabolismo , Meiose/genética , Espermatogônias/metabolismo , Perfilação da Expressão Gênica , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Espermatócitos/metabolismo , Transcriptoma
12.
Small ; : e2403247, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39039997

RESUMO

AgSbS2-xSex is a promising light-harvesting material for thin film solar cells, characterized by nontoxicity, high chemical stability, and excellent optoelectronic properties. However, the complex chemical composition of AgSbS2-xSex poses significant challenges to thin film preparation, giving rise to an intensive dependence on multi-step preparation methods. Herein, a hydrothermal method is developed for depositing AgSbS2-xSex films and achieves one-step preparation of this kind of thin film materials for the first time. This method can provide sufficient energy for atomic nucleation and adsorption on the substrate surface to promote nuclei aggregation and grow into films. Meanwhile, it achieves control of the chemical kinetics of the deposition solution by introducing EDTA-2Na as an additive and suppressing the enrichment of Ag2Se impurities at the substrate interface. As a result, a high-purity AgSbS2-xSex film with compact and flat morphology is prepared and assembled into solar cells. The device delivers a power conversion efficiency of 3.04% under standard illumination, which is currently the highest efficiency for AgSbS2-xSex solar cells fabricated by the one-step method. This study provides a facile and promising method for the controllable preparation of high-quality AgSbS2-xSex thin films and promoting their application in solar cells.

13.
Sci Total Environ ; 948: 174452, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-38964396

RESUMO

Airborne trace elements (TEs) present in atmospheric fine particulate matter (PM2.5) exert notable threats to human health and ecosystems. To explore the impact of meteorological conditions on shaping the pollution characteristics of TEs and the associated health risks, we quantified the variations in pollution characteristics and health risks of TEs due to meteorological impacts using weather normalization and health risk assessment models, and analyzed the source-specific contributions and potential sources of primary TEs affecting health risks using source apportionment approaches at four sites in Shandong Province from September to December 2021. Our results indicated that TEs experience dual effects from meteorological conditions, with a tendency towards higher TE concentrations and related health risks during polluted period, while the opposite occurred during clean period. The total non-carcinogenic and carcinogenic risks of TEs during polluted period increased approximately by factors of 0.53-1.74 and 0.44-1.92, respectively. Selenium (Se), manganese (Mn), and lead (Pb) were found to be the most meteorologically influenced TEs, while chromium (Cr) and manganese (Mn) were identified as the dominant TEs posing health risks. Enhanced emissions of multiple sources for Cr and Mn were found during polluted period. Depending on specific wind speeds, industrialized and urbanized centers, as well as nearby road dusts, could be key sources for TEs. This study suggested that attentions should be paid to not only the TEs from primary emissions but also the meteorology impact on TEs especially during pollution episodes to reduce health risks in the future.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Aprendizado de Máquina , Material Particulado , Oligoelementos , Poluentes Atmosféricos/análise , Material Particulado/análise , Poluição do Ar/estatística & dados numéricos , Oligoelementos/análise , China , Medição de Risco
14.
J Am Chem Soc ; 146(25): 17041-17053, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38865208

RESUMO

A large amount of lithium-ion storage in Si-based anodes promises high energy density yet also results in large volume expansion, causing impaired cyclability and conductivity. Instead of restricting pulverization of Si-based particles, herein, we disclose that single-walled carbon nanotubes (SWNTs) can take advantage of volume expansion and induce interfacial reactions that stabilize the pulverized Si-based clusters in situ. Operando Raman spectroscopy and density functional theory calculations reveal that the volume expansion by the lithiation of Si-based particles generates ∼14% tensile strains in SWNTs, which, in turn, strengthens the chemical interaction between Li and C. This chemomechanical coupling effect facilitates the transformation of sp2-C at the defect of SWNTs to Li-C bonds with sp3 hybridization, which also initiates the formation of new Si-C chemical bonds at the interface. Along with this process, SWNTs can also induce in situ reconstruction of the 3D architecture of the anode, forming mechanically strengthened networks with high electrical and ionic conductivities. As such, with the addition of only 1 wt % of SWNTs, graphite/SiOx composite anodes can deliver practical performance well surpassing that of commercial graphite anodes. These findings enrich our understanding of strain-induced interfacial reactions, providing a general principle for mitigating the degradation of alloying or conversion-reaction-based electrodes.

15.
Sci Total Environ ; 946: 174108, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38914328

RESUMO

Comprehensive volatile organic compounds (VOCs) emission control is imperative to decreasing occupational health risks and environmental impact of the packaging and printing industries. In this work, we investigated the VOCs emission characteristics and concentrations of individual contaminants generated by the packaging and printing industries, with regard to various categories, processes, and geographic regions. VOCs emissions, ozone formation potential (OFP), and associated health risks were assessed at 10 representative packaging and printing firms across several cities in Shandong Province, China. Plastic packaging enterprises had the greatest levels of unorganized VOCs emissions, consisting predominantly of oxygenated volatile organic compounds (OVOCs), followed by alkanes and halocarbons. From metal and paper packaging enterprises, OVOCs, alkanes, and aromatics were significant components of unorganized VOCs emissions. Aromatics, halocarbons, and OVOCs contributed significantly to OFP in workshops. The potential carcinogenic risk associated with VOCs in the packaging and printing industries was not significant. However, according to the findings in this study, the workshop environment may provide a comparatively elevated non-carcinogenic risk attributable to ethyl acetate, isopropanol, acrolein, 1,1,2-Trichloroethane, 1,2-Dichloropropane, and naphthalene exposure. In particular, the endocrine-disrupting and genetic toxic effects caused by benzene, toluene, styrene, and naphthalene should not be overlooked. Thus, it is essential to provide precedence to the working environment conditions of workshop laborers, while also undertaking scientific and systematic measures to mitigate the detrimental impacts of VOCs on the environment and human welfare.


Assuntos
Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , China , Monitoramento Ambiental , Medição de Risco , Impressão , Embalagem de Produtos , Humanos , Poluentes Atmosféricos/análise , Exposição Ocupacional/análise , Poluentes Ocupacionais do Ar/análise
16.
Angew Chem Int Ed Engl ; 63(36): e202406512, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38899603

RESUMO

Band structure of a semiconducting film critically determines the charge separation and transport efficiency. In antimony selenosulfide (Sb2(S,Se)3) solar cells, the hydrothermal method has achieved control of band gap width of Sb2(S,Se)3 thin film through tuning the atomic ratio of S/Se, resulting in an efficiency breakthrough towards 10 %. However, the obtained band structure exhibits an unfavorable gradient distribution in terms of carrier transport, which seriously impedes the device efficiency improvement. To solve this problem, here we develop a strategy by intentionally regulating hydrothermal temperature to control the chemical reaction kinetics between S and Se sources with Sb source. This approach enables the control over vertical distribution of S/Se atomic ratio in Sb2(S,Se)3 films, forming a favorable band structure which is conducive to carrier transport. Meanwhile, the adjusted element distribution not only ensures the uniformity of grain structure, but also increases the Se content of the films and suppress sulfur vacancy defects. Ultimately, the device delivers a high efficiency of 10.55 %, which is among the highest reported efficiency of Sb2(S,Se)3 solar cells. This study provides an effective strategy towards manipulating the element distribution in mixed-anion compound films prepared by solution-based method to optimize their optical and electrical properties.

17.
Int J Med Inform ; 189: 105505, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38824858

RESUMO

INTRODUCTION: Accurate evaluation of exacerbation frequency is an essential part of COPD assessment. But relying on just the prior-year exacerbation history may not capture the full picture of risk given the inherent year-to-year fluctuations in exacerbation rates. This study aimed to evaluate the predictive performance of models incorporating the 3-year exacerbation history based on electronic medical record. MATERIALS AND METHODS: This retrospective cohort study included 86,501 COPD hospitalized patients in Beijing from 2008 to 2014. The annual frequency of COPD exacerbation hospitalizations over a 3-year period after the index hospitalization was calculated, with patients segmented into seven distinct exacerbation trajectory groups. Logistic regression was used to evaluate the predictive capability of the 3-year exacerbation history for exacerbation readmission in the fourth year. Predictors included age, sex, comorbidities, and exacerbation hospitalization in previous 1-3 years. Model performance was evaluated using area under the receiver operating characteristic curve (AUC). RESULTS: Of the studied patients, 56.5% were men, and the mean age (SD) was 73.8 (10.3) years. The overall readmission rate for COPD exacerbation was 0.31 per person-year, with only 3.8% of patients persistently readmitted over three consecutive years. The 3-year trajectory of exacerbation frequency was associated with exacerbation risk in the fourth year. Compared to just the prior year, the inclusion of a 3-year exacerbation hospitalization history notably improved prediction accuracy, with AUC elevating from 0.731 (0.724-0.739) to 0.786 (0.779-0.792). CONCLUSION: These results unveil the fluctuating nature of COPD exacerbation hospitalization frequency across years and demonstrate that integrating a more comprehensive 3-year exacerbation history significantly refines the prediction model for future risk, thus providing a more nuanced and actionable insight for clinical care.


Assuntos
Progressão da Doença , Registros Eletrônicos de Saúde , Readmissão do Paciente , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Masculino , Feminino , Readmissão do Paciente/estatística & dados numéricos , Idoso , Registros Eletrônicos de Saúde/estatística & dados numéricos , Estudos Retrospectivos , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Previsões , Medição de Risco/métodos , Hospitalização/estatística & dados numéricos , Fatores de Risco
18.
Jpn J Radiol ; 42(10): 1187-1197, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38789911

RESUMO

PURPOSE: A classification-based segmentation method is proposed to quantify synovium in rheumatoid arthritis (RA) patients using a deep learning (DL) method based on time-intensity curve (TIC) analysis in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). MATERIALS AND METHODS: This retrospective study analyzed a hand MR dataset of 28 RA patients (six males, mean age 53.7 years). A researcher, under expert guidance, used in-house software to delineate regions of interest (ROIs) for hand muscles, bones, and synovitis, generating a dataset with 27,255 pixels with corresponding TICs (muscle: 11,413, bone: 8502, synovitis: 7340). One experienced musculoskeletal radiologist performed ground truth segmentation of enhanced pannus in the joint bounding box on the 10th DCE phase, or around 5 min after contrast injection. Data preprocessing included median filtering for noise reduction, phase-only correlation algorithm for motion correction, and contrast-limited adaptive histogram equalization for improved image contrast and noise suppression. TIC intensity values were normalized using zero-mean normalization. A DL model with dilated causal convolution and SELU activation function was developed for enhanced pannus segmentation, tested using leave-one-out cross-validation. RESULTS: 407 joint bounding boxes were manually segmented, with 129 synovitis masks. On the pixel-based level, the DL model achieved sensitivity of 85%, specificity of 98%, accuracy of 99% and precision of 84% for enhanced pannus segmentation, with a mean Dice score of 0.73. The false-positive rate for predicting cases without synovitis was 0.8%. DL-measured enhanced pannus volume strongly correlated with ground truth at both pixel-based (r = 0.87, p < 0.001) and patient-based levels (r = 0.84, p < 0.001). Bland-Altman analysis showed the mean difference for hand joints at the pixel-based and patient-based levels were -9.46 mm3 and -50.87 mm3, respectively. CONCLUSION: Our DL-based DCE-MRI TIC shape analysis has the potential for automatic segmentation and quantification of enhanced synovium in the hands of RA patients.


Assuntos
Artrite Reumatoide , Meios de Contraste , Imageamento por Ressonância Magnética , Sinovite , Humanos , Artrite Reumatoide/diagnóstico por imagem , Masculino , Sinovite/diagnóstico por imagem , Pessoa de Meia-Idade , Feminino , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos , Mãos/diagnóstico por imagem , Idoso , Adulto , Interpretação de Imagem Assistida por Computador/métodos , Aprendizado Profundo , Articulação da Mão/diagnóstico por imagem
19.
Vision Res ; 219: 108397, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38579406

RESUMO

Glaucoma is an irreversible blinding eye disease. The mechanisms underlying glaucoma are complex. Up to now, no successful remedy has been found to completely cure the condition. High intraocular pressure (IOP) is an established risk factor for glaucoma and the only known modifiable factor for glaucoma treatment. Mice have been widely used to study glaucoma pathogenesis. IOP measurement is an important tool for monitoring the potential development of glaucomatous phenotypes in glaucoma mouse models. Currently, there are two methods of IOP measurement in mice: invasive and non-invasive. As the invasive method can cause corneal damage and inflammation, and most of the noninvasive method involves the use of anesthetics. In the course of our research, we designed a mouse fixation device to facilitate non-invasive measurements of mouse IOPs. Using this device, mouse IOPs can be accurately measured in awake mice. This device will help researchers to accurately assess mouse IOP without the use of anesthetics.


Assuntos
Modelos Animais de Doenças , Pressão Intraocular , Tonometria Ocular , Animais , Pressão Intraocular/fisiologia , Camundongos , Tonometria Ocular/instrumentação , Tonometria Ocular/métodos , Camundongos Endogâmicos C57BL , Glaucoma/fisiopatologia , Vigília/fisiologia , Desenho de Equipamento
20.
Adv Mater ; 36(24): e2313524, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38453665

RESUMO

Crystallization orientation plays a crucial role in determining the performance and stability of perovskite solar cells (PVSCs), whereas effective strategies for realizing oriented perovskite crystallization is still lacking. Herein, a facile and efficient top-down strategy is reported to manipulate the crystallization orientation via treating perovskite wet film with propylamine chloride (PACl) before annealing. The PA+ ions tend to be adsorbed on the (001) facet of the perovskite surface, resulting in the reduced cleavage energy to induce (001) orientation-dominated growth of perovskite film and then reduce the temperature of phase transition, meanwhile, the penetrating Cl ions further regulate the crystallization process. As-prepared (001)-dominant perovskite films exhibit the ameliorative film homogeneity in terms of vertical and horizontal scale, leading to alleviated lattice mismatch and lowered defect density. The resultant PVSC devices deliver a champion power conversion efficiency (PCE) of 25.07% with enhanced stability, and the unencapsulated PVSC device maintains 95% of its initial PCE after 1000 h of operation at the maximum power point under simulated AM 1.5G illumination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA