Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
NPJ Vaccines ; 8(1): 153, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37813912

RESUMO

Some studies have shown that lyophilization significantly improves the stability of mRNA-LNPs and enables long-term storage at 2-8 °C. However, there is little research on the lyophilization process of mRNA-lipid nanoparticles (LNPs). Most previous studies have used empirical lyophilization with only a single lyoprotectant, resulting in low lyophilization efficiency, often requiring 40-100 h. In the present study, an efficient lyophilization method suitable for mRNA-LNPs was designed and optimized, shortening the total length of the lyophilization process to 8-18 h, which significantly reduced energy consumption and production costs. When the mixed lyoprotectant composed of sucrose, trehalose, and mannitol was added to mRNA-LNPs, the eutectic point and collapse temperature of the system were increased. The lyophilized product had a ginger root-shaped rigid structure with large porosity, which tolerated rapid temperature increases and efficiently removed water. In addition, the lyophilized mRNA-LNPs rapidly rehydrated and had good particle size distribution, encapsulation rate, and mRNA integrity. The lyophilized mRNA-LNPs were stable at 2-8 °C, and they did not reduce immunogenicity in vivo or in vitro. Molecular dynamics simulation was used to compare the phospholipid molecular layer with the lyoprotectant in aqueous and anhydrous environments to elucidate the mechanism of lyophilization to improve the stability of mRNA-LNPs. This efficient lyophilization platform significantly improves the accessibility of mRNA-LNPs.

2.
Eur J Med Chem ; 261: 115822, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37793325

RESUMO

In order to overcome the current LNP-mRNA delivery system's weakness of poor stability and rapid degradation by nuclease, a novel chol-CGYKK molecule and then the new phospholipid liposome were designed and prepared. A solid phase approach synthesized CGYKK and connected it to cholesterol via a disulfide linker to form the desired chol-CGYKK. Four formulated samples with different proportions of excipients were prepared by freeze-drying cationic liposomes and packaged S-mRNA. The stability test shows that after six months at 4 °C, the encapsulation rate of this novel phospholipid liposome was still approximately 90%, which would significantly improve the storage and transportation requirement. Transmission electron microscopy, atomic force microscopy, and scanning electron microscopy indicated that the liposomes were spherical and uniformly dispersed. On comparing the levels of mRNA protein expression of the four formulated samples, the S protein vaccine expression of formulated sample 1 was the highest. Uptake by vector cells for formulated sample 1 showed that compared to Lipo2000, and the transfection efficiency was 66.7%. Furthermore, the safety evaluation of the CGYKK and mRNA vaccine liposomes revealed no toxic effects. The in vivo study demonstrated that this novel mRNA vaccine had an immune response. However, it was still not as good as the LNP group right now, but its excellent physicochemical properties, stability, in vitro biological activity, and in vivo efficacy against SARS-CoV-2 provided new strategies for developing the next generation of mRNA delivery system.


Assuntos
Peptídeos Penetradores de Células , Lipossomos , Lipossomos/química , Esteróis , Transfecção , Fosfolipídeos
3.
J Infect ; 87(6): 556-570, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37898410

RESUMO

BACKGROUND: The novel coronavirus pneumonia (COVID-19) is an infectious disease caused by the infection of a novel coronavirus known as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which has resulted in millions of deaths. We aimed to evaluate the safety and immunogenicity of the COVID-19 mRNA vaccine (CS-2034, CanSino, Shanghai, China) in adults without COVID-19 infection from China. METHOD: This is a multicenter Phase I clinical trial with a randomized, double-blinded, dose-exploration, placebo-controlled design. The trial recruited 40 seronegative participants aged 18-59 years who had neither received any COVID-19 vaccine nor been infected before. They were divided into a low-dose group (administered with either the CS-2034 vaccine containing 30 µg of mRNA or a placebo of 0.3 ml type 5 adenovirus vector) and a high-dose group (administered with either the CS-2034 vaccine containing 50 µg of mRNA or a placebo of 0.5 ml type 5 adenovirus vector). Participants were randomly assigned in a 3:1 ratio to receive either the mRNA vaccine or a placebo on days 0 and 21 according to a two-dose immunization schedule. The first six participants in each dosage group were assigned as sentinel subjects. Participants were sequentially enrolled in a dose-escalation manner from low to high dose and from sentinel to non-sentinel subjects. Blood samples were collected from all participants on the day before the first dose (Day 0), the day before the second dose (day 21), 14 days after the second dose (day 35), and 28 days after the second dose (day 49) to evaluate the immunogenicity of the CS-2034 vaccine. Participants were monitored for safety throughout the 28-day follow-up period, including solicited adverse events, unsolicited adverse events, adverse events of special interest (AESI), and medically attended adverse events (MAE). This report focuses solely on the safety and immunogenicity analysis of adult participants aged 18-59 years, while the long-term phase of the study is still ongoing. This study is registered at ClinicalTrials.gov, NCT05373485. FINDINGS: During the period from May 17, 2022, to August 8, 2022, a total of 155 participants aged 18-59 years were screened for this study. Among them, 115 participants failed the screening process, and 40 participants were randomly enrolled (15 in the low-dose group, 15 in the high-dose group, and 10 in the placebo group). Throughout the 28-day follow-up period, the overall incidence of adverse reactions (related to vaccine administration) in the low-dose group, high-dose group, and placebo group was 93.33% (14/15), 100.00% (15/15), and 80.00% (8/10), respectively. There was a statistically significant difference in the incidence of local adverse reactions (soreness, pruritus, swelling at the injection site) among the low-dose group, high-dose group, and placebo group (P = 0.002). All adverse reactions were mainly of severity grade 1 (mild) or 2 (moderate), and no adverse events of severity grade 4 or higher occurred. Based on the analysis of Spike protein Receptor Binding Domain (S-RBD) IgG antibodies against the BA.1 strain, the seroconversion rates of antibodies at day 21 after the first dose were 86.67%, 93.33%, and 0.00% in the low-dose group, high-dose group, and placebo group, respectively. The geometric mean titer (GMT) of antibodies was 61.2(95%CI 35.3-106.2), 55.4(95%CI 36.3-84.4), and 15.0(95%CI 15.0-15.0), and the geometric mean fold increase (GMI) was 4.08(95%CI 2.35-7.08), 3.69(95%CI 2.42-5.63), and 1.00(95%CI 1.00-1.00) for each group. At day 28 after the full vaccination, the seroconversion rates of antibodies were 100.00%, 93.33%, and 0.00%, and the GMT of antibodies was 810.0(95%CI 511.4-1283.0), 832.2(95%CI 368.1-1881.6), and 15.0(95%CI 15.0-15.0), and the GMI was 54.00(95%CI 34.09-85.53), 55.48(95%CI 24.54-125.44), and 1.00(95%CI 1.00-1.00) for each group, respectively. Based on the analysis of CD3+/CD4+ cell cytokine response, the percentages of IL-2+, IL-4+, IFN-γ+, and TNF-α+ cells increased after 14 days and 28 days of full vaccination in both the low-dose group and high-dose group. The increase was most pronounced in the high-dose group. INTERPRETATION: At day 28 after the full vaccination, both the low-dose and the high-dose CS-2034 vaccine were able to induce the production of high titers of S-RBD IgG antibodies against the BA.1 strain. Adverse reactions in the low-dose and high-dose groups were mainly of severity grade 1 or 2, and no trial-limiting safety concerns were identified. These findings support further development of this vaccine.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Imunogenicidade da Vacina , Adulto , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , China , COVID-19/prevenção & controle , Vacinas contra COVID-19/uso terapêutico , Método Duplo-Cego , População do Leste Asiático , Imunoglobulina G , RNA Mensageiro , SARS-CoV-2 , Vacinas Sintéticas/uso terapêutico , Vacinas de mRNA
4.
Lancet Infect Dis ; 23(9): 1020-1030, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37216958

RESUMO

BACKGROUND: Heterologous boosting is suggested to be of use in populations who have received inactivated COVID-19 vaccines. We aimed to assess the safety and immunogenicity of a heterologous vaccination with the mRNA vaccine CS-2034 versus the inactivated BBIBP-CorV as a fourth dose, as well as the efficacy against the SARS-CoV-2 omicron (BA.5) variant. METHODS: This trial contains a randomised, double-blind, parallel-controlled study in healthy participants aged 18 years or older (group A) and an open-label cohort in participants 60 years and older (group B), who had received three doses of inactivated whole-virion vaccines at least 6 months before enrolment. Pregnant women and people with major chronic illnesses or a history of allergies were excluded. Eligible participants in group A were stratified by age (18-59 years and ≥60 years) and then randomised by SAS 9.4 in a ratio of 3:1 to receive a dose of the mRNA vaccine (CS-2034, CanSino, Shanghai, China) or inactivated vaccine (BBIBP-CorV, Sinopharm, Beijing, China). Safety and immunogenicity against omicron variants of the fourth dose were evaluated in group A. Participants 60 years and older were involved in group B for safety observations. The primary outcome was geometric mean titres (GMTs) of the neutralising antibodies against omicron and seroconversion rates against BA.5 variant 28 days after the boosting, and incidence of adverse reactions within 28 days. The intention-to-treat group was involved in the safety analysis, while all patients in group A who had blood samples taken before and after the booster were involved in the immunogenicity analysis. This trial was registered at the Chinese Clinical Trial Registry Centre (ChiCTR2200064575). FINDINGS: Between Oct 13, and Nov 22, 2022, 320 participants were enrolled in group A (240 in the CS-2034 group and 80 in the BBIBP-CorV group) and 113 in group B. Adverse reactions after vaccination were more frequent in CS-2034 recipients (158 [44·8%]) than BBIBP-CorV recipients (17 [21·3%], p<0·0001). However, most adverse reactions were mild or moderate, with grade 3 adverse reactions only reported by eight (2%) of 353 participants receiving CS-2034. Heterologous boosting with CS-2034 elicited 14·4-fold (GMT 229·3, 95% CI 202·7-259·4 vs 15·9, 13·1-19·4) higher concentration of neutralising antibodies to SARS-CoV-2 omicron variant BA.5 than did homologous boosting with BBIBP-CorV. The seroconversion rates of SARS-CoV-2-specific neutralising antibody responses were much higher in the mRNA heterologous booster regimen compared with BBIBP-CorV homologous booster regimen (original strain 47 [100%] of 47 vs three [18·8%] of 16; BA.1 45 [95·8%] of 48 vs two [12·5%] 16; and BA.5 233 [98·3%] of 240 vs 15 [18·8%] of 80 by day 28). INTERPRETATION: Both the administration of mRNA vaccine CS-2034 and inactivated vaccine BBIBP-CorV as a fourth dose were well tolerated. Heterologous boosting with mRNA vaccine CS-2034 induced higher immune responses and protection against symptomatic SARS-CoV-2 omicron infections compared with homologous boosting, which could support the emergency use authorisation of CS-2034 in adults. FUNDING: Science and Technology Commission of Shanghai, National Natural Science Foundation of China, Jiangsu Provincial Science Fund for Distinguished Young Scholars, and Jiangsu Provincial Key Project of Science and Technology Plan. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Assuntos
COVID-19 , Complicações Infecciosas na Gravidez , Gravidez , Humanos , Adulto , Feminino , Adolescente , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , China , SARS-CoV-2 , Anticorpos Neutralizantes , Método Duplo-Cego , Imunogenicidade da Vacina , Anticorpos Antivirais
5.
Emerg Microbes Infect ; 11(1): 1550-1553, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35604772

RESUMO

In order to overcome the pandemic of COVID-19, messenger RNA (mRNA)-based vaccine has been extensively researched as a rapid and versatile strategy. Herein, we described the immunogenicity of mRNA-based vaccines for Beta and the most recent Omicron variants. The homologous mRNA-Beta and mRNA-Omicron and heterologous Ad5-nCoV plus mRNA vaccine exhibited high-level cross-reactive neutralization for Beta, original, Delta, and Omicron variants. It indicated that the COVID-19 mRNA vaccines have great potential in the clinical use against different SARS-CoV-2 variants.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Humanos , RNA Mensageiro/genética , SARS-CoV-2/genética , Vacinas Sintéticas , Vacinas de mRNA
6.
Eur J Med Chem ; 227: 113910, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34689071

RESUMO

The current COVID-19 epidemic has greatly accelerated the application of mRNA technology to our real world, and during this battle mRNA has proven it's unique advantages compared to traditional biopharmaceutical and vaccine technology. In order to overcome mRNA instability in human physiological environments, mRNA chemical modifications and nano delivery systems are two key factors for their in vivo applications. In this review, we would like to summarize the challenges for clinical translation of mRNA-based therapeutics, with an emphasis on recent advances in innovative materials and delivery strategies. The nano delivery systems include lipid delivery systems (lipid nanoparticles and liposomes), polymer complexes, micelles, cationic peptides and so on. The similarities and differences of lipid nanoparticles and liposomes are also discussed. In addition, this review also present the applications of mRNA to other areas than COVID-19 vaccine, such as infectious diseases, tumors, and cardiovascular disease, for which a variety of candidate vaccines or drugs have entered clinical trials. Furthermore, mRNA was found that it might be used to treat some genetic disease, overcome the immaturity of the immune system due to the small fetal size in utero, treat some neurological diseases that are difficult to be treated surgically, even be used in advancing the translation of iPSC technology et al. In short, mRNA has a wide range of applications, and its era has just begun.


Assuntos
Sistemas de Liberação de Fármacos por Nanopartículas/química , RNA Mensageiro/química , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/química , Humanos , Lipossomos/química , Micelas , Nanopartículas/química , Peptídeos/química , RNA Mensageiro/metabolismo , SARS-CoV-2/isolamento & purificação
7.
Carbohydr Res ; 499: 108196, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33243427

RESUMO

Brucellosis is a highly infectious zoonotic disease caused by Brucella. It is necessary to control and eliminate brucellosis. The cell wall O-polysaccharides of pathogenic Brucella species are homopolymers of the rare sugar 4,6-dideoxy-4-formamido-α-d-mannopyranose. Herein, one neoglycoconjugate was successfully synthesized based on disaccharide [Rha4NFo(1 â†’ 2)Rha4NFo] as epitope. Disaccharide specific antibodies were detected by ELISA and the immune protective effect was further evaluated with PBS as control. The result showed that the synthetic neoglycoconjugate can produce moderate immune responses in mice and significantly decreased splenic Brucella M5 burden comparing with control group. The chemically defined antigen identified the A antigenic determinant and provided a structural basis for understanding the fine specificity of polyclonal antibodies that bind the A antigen. The neoglycoconjugate shows the potential in detection reagent or vaccine development for brucellosis.


Assuntos
Brucella/química , Glicoconjugados/síntese química , Animais , Brucella/imunologia , Configuração de Carboidratos , Feminino , Glicoconjugados/química , Glicoconjugados/imunologia , Camundongos
8.
Chem Biol Interact ; 261: 103-107, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27908776

RESUMO

3'-Geranyl-mono-substituted chalcone Xanthoangelol (1b), a chalcone derivative, was previously reported to show selective cytotoxicity against human chronic myelogenous leukemia K562 cells with a half-maximal inhibitory concentration (IC50) of 3.98 µM. In the present study, we investigated the molecular mechanism underlying the cytotoxicity of 1b in K562 cells. Treatment with compound 1b caused K562 cells to adopt a typical apoptotic morphology. Flow cytometric analysis also confirmed the presence of an apoptotic cell population following treatment of Annexin-V-FITC and propidium iodide (PI) double-labeled K562 cells with 1b. Furthermore, we observed dissipation of the mitochondrial membrane potential, caspase-3 activation, and a reduction of the Bcl-2/Bax ratio in these cells, which suggest that the mitochondrial apoptotic pathway is induced by 1b in K562 cells. Collectively, our findings demonstrate that compound 1b notably induces mitochondrial-mediated apoptosis in K562 cells, which might have a potential anticancer activity.


Assuntos
Apoptose/efeitos dos fármacos , Chalcona/análogos & derivados , Leucemia/patologia , Mitocôndrias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Caspase 3/metabolismo , Forma Celular/efeitos dos fármacos , Chalcona/química , Chalcona/farmacologia , Humanos , Células K562 , Leucemia/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
9.
Bioorg Med Chem Lett ; 25(20): 4567-71, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26351039

RESUMO

Three series of prenylated and/or geranylated flavonoids were synthesized and evaluated for their α-glucosidase inhibitory activity. The 3',5'-digeranylated chalcone (16) was identified as a new α-glucosidase inhibitor whose activity (IC50=0.90 µM) was 50-fold more than that of acarbose (IC50=51.32 µM). Molecular docking studies revealed the existence of strong hydrophobic interaction and H-bonding between compound 16 and α-glucosidase's active site. The inhibitory mode analysis showed that 16 exhibited a competitive inhibitory mode.


Assuntos
Chalconas/farmacologia , Flavonas/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Isoflavonas/farmacologia , Simulação de Acoplamento Molecular , alfa-Glucosidases/metabolismo , Chalconas/síntese química , Chalconas/química , Relação Dose-Resposta a Droga , Flavonas/síntese química , Flavonas/química , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/química , Humanos , Isoflavonas/síntese química , Isoflavonas/química , Estrutura Molecular , Relação Estrutura-Atividade
10.
Eur J Med Chem ; 92: 439-48, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25590864

RESUMO

Four natural chalcones bearing prenyl or geranyl groups, i.e., bavachalcone (1a), xanthoangelol (1b), isobavachalcone (1c), and isoxanthoangelol (1d) were synthesized by using a regio-selective iodination and the Suzuki coupling reaction as key steps. The first total synthesis of isoxanthoangelol (1d) was achieved in 36% overall yield. A series of diprenylated and digeranylated chalcone analogs were also synthesized by alkylation, regio-selective iodination, aldol condensation, Suzuki coupling and [1,3]-sigmatropic rearrangement. The structures of the 11 new derivatives were confirmed by (1)H NMR, (13)C NMR and HRMS. The anticancer activity of these new chalcone derivatives against human tumor cell line K562 were evaluated by MTT assay in vitro. SAR studies suggested that the 5'-prenylation/geranylation of the chalcones significantly enhance their cytotoxic activity. Among them, Bavachalcone (1a) displayed the most potent cytotoxic activity against K562 with IC50 value of 2.7 µM. The morphology changes and annexin-V/PI staining studies suggested that those chalcone derivatives inhibited the proliferation of K562 cells by inducing apoptosis.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Produtos Biológicos/síntese química , Produtos Biológicos/farmacologia , Chalcona/análogos & derivados , Chalcona/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Produtos Biológicos/química , Proliferação de Células/efeitos dos fármacos , Chalcona/síntese química , Chalcona/química , Relação Dose-Resposta a Droga , Endotélio Vascular/efeitos dos fármacos , Humanos , Células K562 , Estrutura Molecular , Relação Estrutura-Atividade
11.
Chem Commun (Camb) ; 50(86): 13121-3, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25225659

RESUMO

Aryl pyrazolone thioethers were synthesized via the I2-catalysed cross-coupling of pyrazolones with aryl sulphonyl hydrazides in the presence of p-toluenesulphonic acid, which has been proposed to promote the reaction by facilitating the decomposition of sulphonyl hydrazides.


Assuntos
Benzenossulfonatos/química , Hidrazinas/química , Iodo/química , Pirazolonas/química , Catálise , Sulfetos/síntese química , Sulfetos/química
12.
J Mol Endocrinol ; 53(1): 17-29, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24780838

RESUMO

Melanocortin 4 receptor (MC4R) is a key factor in regulating energy homeostasis, and null mutations occurring in the gene encoding MC4R cause severe early-onset morbid obesity in humans. Many obesity-causing mutations affecting MC4R clinically identified so far lead to failure of mutant receptors to shuttle to the plasma membrane. In this study, we show that a novel human MC4R antagonist, Ipsen 17, acted as an pharmacological chaperone of human MCR4. As tested with 12 obesity-causing human MC4R variants including S58C, E61K, N62S, I69T, P78L, C84R, G98R, T162I, R165W, W174C, C271Y, and P299H, Ipsen 17 was found to be the most universal pharmacological chaperone of MC4R reported so far because it can completely rescue nearly all mutant receptors (except P299H) with the highest potency (an EC50 value of approximately 10(-8) M) and efficiency when compared with results for other tested pharmacological chaperones of MC4R including ML00253764, PBA, MTHP, PPPone, MPCI, DCPMP, and NBP described in the literature. Once restored to the plasma membrane, defective human MC4R variants responded to α-MSH stimulation with an EC50 value of approximately 10(-8) M and displayed dramatically enhanced signaling ability (except for G98R) in a mutant-specific efficacy and potency profile. Taken together, these results indicate that Ipsen 17 represents a candidate for the development of a targeted treatment of severe early-onset morbid obesity caused by a large subset of inherited mutations in the human MC4R gene.


Assuntos
Benzimidazóis/farmacologia , Receptor Tipo 4 de Melanocortina/antagonistas & inibidores , Receptor Tipo 4 de Melanocortina/genética , Substituição de Aminoácidos , Benzimidazóis/química , Membrana Celular/metabolismo , AMP Cíclico/biossíntese , Variação Genética , Células HEK293 , Humanos , Imidazóis/farmacologia , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Obesidade Mórbida/genética , Obesidade Mórbida/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Transdução de Sinais/efeitos dos fármacos , alfa-MSH/metabolismo , alfa-MSH/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA