Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Commun ; : 100944, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38733080

RESUMO

The Caesalpinioideae subfamily contains many well-known trees that are important for the sustainability of the economy and human health, but the lack of genomic resources hindered the breeding and utilization of these plants. Here, we present chromosome-level reference genomes for two food and industrial trees Gleditsia sinensis (921 Mb) and Biancaea sappan (872 Mb), three shade and ornamental trees Albizia julibrissin (705 Mb), Delonix regia (580 Mb) and Acacia confusa (566 Mb), as well as two pioneer and hedgerow trees Leucaena leucocephala (1,338 Mb) and Mimosa bimucronata (641 Mb). Phylogeny inference showed that the mimosoid clade has a much higher evolution rate than the other clades of Caesalpinioideae. Macrosynteny comparison showed that the fusion and broken of an unstable chromosome was responsible for the difference in the basic chromosome number 13 and 14 for Caesalpinioideae. After the ancient whole genome duplication shared by all Caesalpinioideae species (CWGD, ∼72.0 MYA), we found two recent successive WGD events LWGD-1 (16.2-19.5 MYA) and LWGD-2 (7.1-9.5 MYA) in L. leucocephala. Then, ∼40% gene loss and genome size contraction occurred during the diploidization process in L. leucocephala. For the secondary metabolites, we identified all the gene copies involved in mimosine metabolism for these species and revealed that the abundance of mimosine biosynthesis genes in L. leucocephala largely explains its high mimosine production. Moreover, we identified all the potential genes involved in triterpenoid saponin biosynthesis in G. sinensis, which is more complete than the previous transcriptome-derived unigenes. Our analyzing results and the genomic resources will facilitate the biological studies of Caesalpinioideae and promote the utilization of valuable secondary metabolites.

2.
Plant Commun ; 5(3): 100767, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-37974403

RESUMO

Jerusalem artichoke (Helianthus tuberosus) is a global multifunctional crop. It has wide applications in the food, health, feed, and biofuel industries and in ecological protection; it also serves as a germplasm pool for breeding of the global oil crop common sunflower (Helianthus annuus). However, biological studies of Jerusalem artichoke have been hindered by a lack of genome sequences, and its high polyploidy and large genome size have posed challenges to genome assembly. Here, we report a 21-Gb chromosome-level assembly of the hexaploid Jerusalem artichoke genome, which comprises 17 homologous groups, each with 6 pseudochromosomes. We found multiple large-scale chromosome rearrangements between Jerusalem artichoke and common sunflower, and our results show that the hexaploid genome of Jerusalem artichoke was formed by a hybridization event between a tetraploid and a diploid Helianthus species, followed by chromosome doubling of the hybrid, which occurred approximately 2 million years ago. Moreover, we identified more copies of actively expressed genes involved in inulin metabolism and showed that these genes may still be undergoing loss of function or sub- or neofunctionalization. These genomic resources will promote further biological studies, breeding improvement, and industrial utilization of Helianthus crops.


Assuntos
Helianthus , Helianthus/genética , Helianthus/metabolismo , Inulina/metabolismo , Haplótipos , Cromossomos/metabolismo
3.
Mol Ecol Resour ; 23(6): 1423-1441, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37150957

RESUMO

Mythimna separata and Mythimna loreyi are global pests of gramineous cereals, heavily controlled with synthetic insecticides. Here, we generated two high-quality chromosome-level genome assemblies for M. separata (688 Mb) and M. loreyi (683 Mb). Our analysis identified Z and W chromosomes, with few genes and abundant transposable elements (TEs) found on the W chromosome. We also observed a recent explosion of long interspersed nuclear elements (LINEs), which contributed to the larger genomes of Mythimna. The two armyworms diverged ~10.5 MYA, with only three chromosomes have intrachromosomal rearrangements. Additionally, we observed a tandem repeat expansion of α-amylase genes in Mythimna, which may promote the digestion of carbohydrates and exacerbate their damage to crops. Furthermore, we inferred the sex pheromone biosynthesis pathway for M. separata, M. loreyi and Spodoptera frugiperda. We discovered that M. loreyi and S. frugiperda synthesized the same major constituents of sex pheromones through different pathways. Specifically, the double bonds in the dominant sex pheromone components of S. frugiperda were generated by Δ9- and Δ11-desaturase, while they were generated by Δ11-desaturase and chain-shortening reactions in M. loreyi. We also identified pheromone receptor (PR) genes and inferred their corresponding components. These findings provide a better understanding of sex pheromone communication and promote the development of a new pest control strategy involving pheromone traps, which are more effective and environmentally friendly than current strategies.


Assuntos
Mariposas , Atrativos Sexuais , Animais , Atrativos Sexuais/genética , Atrativos Sexuais/metabolismo , Spodoptera/genética , Mariposas/genética , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Cromossomos
4.
DNA Res ; 30(1)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36473054

RESUMO

Amaranthus tricolor is a vegetable and ornamental amaranth, with high lysine, dietary fibre and squalene content. The red cultivar of A. tricolor possesses a high concentration of betalains, which has been used as natural food colorants. Here, we constructed the genome of A. tricolor, the first reference genome for the subgenus Albersia, combining PacBio HiFi, Nanopore ultra-long and Hi-C data. The contig N50 size was 906 kb, and 99.58% of contig sequence was anchored to the 17 chromosomes, totalling 520 Mb. We annotated 27,813 protein-coding genes with an average 1.3 kb coding sequence and 5.3 exons. We inferred that A. tricolor underwent a whole-genome duplication (WGD) and that the WGD shared by amaranths occurred in the last common ancestor of subfamily Amaranthoideae. Moreover, we comprehensively identified candidate genes in betalain biosynthesis pathway. Among them, DODAα1 and CYP76ADα1, located in one topologically associated domain (TAD) of an active (A) compartment on chromosome 16, were more highly expressed in red leaves than in green leaves, and DODAα1 might be the rate-limiting enzyme gene in betalains biosynthesis. This study presents new genome resources and enriches our understanding of amaranth evolution, betalains production, facilitating molecular breeding improvements and the understanding of C4 plants evolution.


Assuntos
Amaranthus , Betalaínas , Betalaínas/metabolismo , Amaranthus/genética , Amaranthus/metabolismo , Genoma de Planta , Genes de Plantas , Cromossomos
5.
BMC Bioinformatics ; 23(1): 528, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482318

RESUMO

BACKGROUND: The application of PacBio HiFi and ultra-long ONT reads have enabled huge progress in the contig-level assembly, but it is still challenging to assemble large contigs into chromosomes with available Hi-C scaffolding tools, which count Hi-C links between contigs using the whole or a large part of contig regions. As the Hi-C links of two adjacent contigs concentrate only at the neighbor ends of the contigs, larger contig size will reduce the power to differentiate adjacent (signal) and non-adjacent (noise) contig linkages, leading to a higher rate of mis-assembly. RESULTS: We design and develop a novel Hi-C based scaffolding tool EndHiC, which is suitable to assemble large contigs into chromosomal-level scaffolds. The core idea behind EndHiC, which distinguishes it from other Hi-C scaffolding tools, is using Hi-C links only from the most effective regions of contig ends. By this way, the signal neighbor contig linkages and noise non-neighbor contig linkages are separated more clearly. Benefiting from the increased signal to noise ratio, the reciprocal best requirement, as well as the robustness evaluation, EndHiC achieves higher accuracy for scaffolding large contigs compared to existing tools. EndHiC has been successfully applied in the Hi-C scaffolding of simulated data from human, rice and Arabidopsis, and real data from human, great burdock, water spinach, chicory, endive, yacon, and Ipomoea cairica, suggesting that EndHiC can be applied to a broad range of plant and animal genomes. CONCLUSIONS: EndHiC is a novel Hi-C scaffolding tool, which is suitable for scaffolding of contig assemblies with contig N50 size near or over 10 Mb and N90 size near or over 1 Mb. EndHiC is efficient both in time and memory, and it is interface-friendly to the users. As more genome projects have been launched and the contig continuity constantly improved, we believe EndHiC has the potential to make a great contribution to the genomics field and liberate the scientists from labor-intensive manual curation works.


Assuntos
Genômica , Humanos
6.
Gigascience ; 112022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36399059

RESUMO

BACKGROUND: Due to the importance of chicken production and the remarkable influence of the gut microbiota on host health and growth, tens of thousands of metagenome-assembled genomes (MAGs) have been constructed for the chicken gut microbiome. However, due to the limitations of short-read sequencing and assembly technologies, most of these MAGs are far from complete, are of lower quality, and include contaminant reads. RESULTS: We generated 332 Gb of high-fidelity (HiFi) long reads from the 5 chicken intestinal compartments and assembled 461 and 337 microbial genomes, of which 53% and 55% are circular, at the species and strain levels, respectively. For the assembled microbial genomes, approximately 95% were regarded as complete according to the "RNA complete" criteria, which requires at least 1 full-length ribosomal RNA (rRNA) operon encoding all 3 types of rRNA (16S, 23S, and 5S) and at least 18 copies of full-length transfer RNA genes. In comparison with the short-read-derived chicken MAGs, 384 (83% of 461) and 89 (26% of 337) strain-level and species-level genomes in this study are novel, with no matches to previously reported sequences. At the gene level, one-third of the 2.5 million genes in the HiFi-derived gene catalog are novel and cannot be matched to the short-read-derived gene catalog. Moreover, the HiFi-derived genomes have much higher continuity and completeness, as well as lower contamination; the HiFi-derived gene catalog has a much higher ratio of complete gene structures. The dominant phylum in our HiFi-assembled genomes was Firmicutes (82.5%), and the foregut was highly enriched in 5 genera: Ligilactobacillus, Limosilactobacillus, Lactobacillus, Weissella, and Enterococcus, all of which belong to the order Lactobacillales. Using GTDB-Tk, all 337 species-level genomes were successfully classified at the order level; however, 2, 35, and 189 genomes could not be classified into any known family, genus, and species, respectively. Among these incompletely classified genomes, 9 and 49 may belong to novel genera and species, respectively, because their 16S rRNA genes have identities lower than 95% and 97% to any known 16S rRNA genes. CONCLUSIONS: HiFi sequencing not only produced metagenome assemblies and gene structures with markedly improved quality but also recovered a substantial portion of novel genomes and genes that were missed in previous short-read-based metagenome studies. The novel genomes and species obtained in this study will facilitate gut microbiome and host-microbiota interaction studies, thereby contributing to the sustainable development of poultry resources.


Assuntos
Galinhas , Metagenoma , Animais , Galinhas/genética , RNA Ribossômico 16S/genética , Metagenômica , Genoma Microbiano
7.
DNA Res ; 29(6)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36197084

RESUMO

Glebionis coronaria is a popular vegetable with special aroma and a medical plant in East Asia and Mediterranean, but its biological studies and breeding have been hindered by the lack of reference genome. Here, we present a chromosome-level reference genome of G. coronaria, with assembled genome size of 6.8 Gb, which is the largest among all the published genomes of diploid Asteraceae species. The large genome size of G. coronaria is mainly caused by the recent widespread explosions of long-terminal-repeat retrotransposons. Analyses of macro-synteny and synonymous mutation rate distribution indicate that the G. coronaria genome experienced a whole-genome triplication at 40-45 million years ago, shared with all Asteraceae species. In subtribe Artemisiinae, Glebionis arose before the divergence of Chrysanthemum from Artemisia, and Glebionis species evolved much faster than Chrysanthemum and Artemisia species. In G. coronaria, the synthesis genes of monoterpenoids 8-oxocitronellyl enol and isopiperitenone were expanded, and the higher expressions of these expanded genes in leaves and stems may contribute to its special aroma. The G. coronaria genomic resources will promote the evolution studies of Asteraceae, the metabolism mechanism studies of bioactive compounds, and the breeding improvement of agronomic traits in G. coronaria.


Assuntos
Genômica , Verduras , Cromossomos , Folhas de Planta , Ásia Oriental
8.
G3 (Bethesda) ; 12(9)2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35894697

RESUMO

Ipomoea cairica is a perennial creeper that has been widely introduced as a garden ornamental across tropical, subtropical, and temperate regions. Because it grows extremely fast and spreads easily, it has been listed as an invasive species in many countries. Here, we constructed the chromosome-level reference genome of Ipomoea cairica by Pacific Biosciences HiFi and Hi-C sequencing, with the assembly size of 733.0 Mb, the contig N50 of 43.8 Mb, the scaffold N50 of 45.7 Mb, and the Benchmarking Universal Single-Copy Orthologs complete rate of 98.0%. Hi-C scaffolding assigned 97.9% of the contigs to 15 pseudo-chromosomes. Telomeric repeat analysis reveals that 7 of the 15 pseudo-chromosomes are gapless and telomere to telomere. The transposable element content of Ipomoea cairica is 73.4%, obviously higher than that of other Ipomoea species. A total of 38,115 protein-coding genes were predicted, with the Benchmarking Universal Single-Copy Orthologs complete rate of 98.5%, comparable to that of the genome assembly, and 92.6% of genes were functional annotated. In addition, we identified 3,039 tRNA genes and 2,403 rRNA genes in the assembled genome. Phylogenetic analysis showed that Ipomoea cairica formed a clade with Ipomoea aquatica, and they diverged from each other 8.1 million years ago. Through comparative genome analysis, we reconfirmed that a whole genome triplication event occurred specific to Convolvulaceae family and in the ancestor of the genus Ipomoea and Cuscuta. This high-quality reference genome of Ipomoea cairica will greatly facilitate the studies on the molecular mechanisms of its rapid growth and invasiveness.


Assuntos
Convolvulaceae , Ipomoea , Cromossomos , Convolvulaceae/genética , Elementos de DNA Transponíveis , Ipomoea/genética , Filogenia
9.
Mol Ecol Resour ; 22(8): 3124-3140, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35751596

RESUMO

Inulin is an important reserve polysaccharide in Asteraceae plants, and is also widely used as a sweetener, a source of dietary fibre and prebiotic. Nevertheless, a lack of genomic resources for inulin-producing plants has hindered extensive studies on inulin metabolism and regulation. Here, we present chromosome-level reference genomes for four inulin-producing plants: chicory (Cichorium intybus), endive (Cichorium endivia), great burdock (Arctium lappa) and yacon (Smallanthus sonchifolius), with assembled genome sizes of 1.28, 0.89, 1.73 and 2.72 Gb, respectively. We found that the chicory, endive and great burdock genomes were shaped by whole genome triplication (WGT-1), and the yacon genome was shaped by WGT-1 and two subsequent whole genome duplications (WGD-2 and WGD-3). A yacon unique whole genome duplication (WGD-3) occurred 5.6-5.8 million years ago. Our results also showed the genome size difference between chicory and endive is largely due to LTR retrotransposons, and rejected a previous hypothesis that chicory is an ancestor of endive. Furthermore, we identified fructan-active-enzyme and transcription-factor genes, and found there is one copy in chicory, endive and great burdock but two copies in yacon for most of these genes, except for the 1-FEH II gene which is significantly expanded in chicory. Interestingly, inulin synthesis genes 1-SST and 1-FFT are located close to each other, as are the degradation genes 1-FEH I and 1-FEH II. Finally, we predicted protein structures for 1-FFT genes to explore the mechanism determining inulin chain length.


Assuntos
Arctium , Asteraceae , Cichorium intybus , Arctium/metabolismo , Asteraceae/genética , Cichorium intybus/genética , Cichorium intybus/metabolismo , Fibras na Dieta/metabolismo , Frutanos/metabolismo , Inulina/metabolismo , Retroelementos , Edulcorantes/metabolismo
10.
Gigascience ; 112022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35373834

RESUMO

BACKGROUND: The globe skimmer dragonfly (Pantala flavescens) is a notable Odonata insect distributed in nature fields and farmlands worldwide, and it is commonly recognized as a natural enemy because it preys on agricultural pests and health pests. As one of the sister groups of winged insects, odonatan species are key to understanding the evolution of insect wings. FINDINGS: We present a high-quality reference genome of P. flavescens, which is the first chromosome-level genome in the Palaeoptera (Odonata and Ephemeroptera). The assembled genome size was 662 Mb, with a contig N50 of 16.2 Mb. Via Hi-C scaffolding, 648 Mb (97.9%) of contig sequences were clustered, ordered, and assembled into 12 large scaffolds, each corresponding to a natural chromosome. The X chromosome was identified by sequence coverage depth. The repetitive sequences and gene density of the X chromosome are similar to those of autosomal sequences, but the X chromosome shows a much lower degree of heterozygosity. Our analysis shows that the effective population size experienced 3 declining events, which may have been caused by climate change and environmental pollution. CONCLUSIONS: The genome of P. flavescens provides more information on the biology and evolution of insects and will help for the use of this species in pest control.


Assuntos
Odonatos , Animais , Cromossomos , Tamanho do Genoma , Odonatos/genética , Filogenia , Sequências Repetitivas de Ácido Nucleico
11.
Front Microbiol ; 13: 1095497, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699587

RESUMO

Background: Anaerobic digestion (AD) is important in treating of food waste, and thousands of metagenome-assembled genomes (MAGs) have been constructed for the microbiome in AD. However, due to the limitations of the short-read sequencing and assembly technologies, most of these MAGs are grouped from hundreds of short contigs by binning algorithms, and the errors are easily introduced. Results: In this study, we constructed a total of 60 non-redundant microbial genomes from 64.5 Gb of PacBio high-fidelity (HiFi) long reads, generated from the digestate samples of a full-scale biogas plant fed with food waste. Of the 60 microbial genomes, all genomes have at least one copy of rRNA operons (16S, 23S, and 5S rRNA), 54 have ≥18 types of standard tRNA genes, and 39 are circular complete genomes. In comparison with the published short-read derived MAGs for AD, we found 23 genomes with average nucleotide identity less than 95% to any known MAGs. Besides, our HiFi-derived genomes have much higher average contig N50 size, slightly higher average genome size and lower contamination. GTDB-Tk classification of these genomes revealed two genomes belonging to novel genus and four genomes belonging to novel species, since their 16S rRNA genes have identities lower than 95 and 97% to any known 16S rRNA genes, respectively. Microbial community analysis based on the these assembled genomes reveals the most predominant phylum was Thermotogae (70.5%), followed by Euryarchaeota (6.1%), and Bacteroidetes (4.7%), and the most predominant bacterial and archaeal genera were Defluviitoga (69.1%) and Methanothrix (5.4%), respectively. Analysis of the full-length 16S rRNA genes identified from the HiFi reads gave similar microbial compositions to that derived from the 60 assembled genomes. Conclusion: High-fidelity sequencing not only generated microbial genomes with obviously improved quality but also recovered a substantial portion of novel genomes missed in previous short-read based studies, and the novel genomes will deepen our understanding of the microbial composition in AD of food waste.

12.
Front Microbiol ; 12: 689855, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248914

RESUMO

An effective solution to global human zinc (Zn) deficiency is Zn biofortification of staple food crops, which has been hindered by the low available Zn in calcareous soils worldwide. Many culturable soil microbes have been reported to increase Zn availability in the laboratory, while the status of these microbes in fields and whether there are unculturable Zn-mobilizing microbes remain unexplored. Here, we use the culture-independent metagenomic sequencing to investigate the rhizosphere microbiome of three high-Zn (HZn) and three low-Zn (LZn) wheat cultivars in a field experiment with calcareous soils. The average grain Zn concentration of HZn was higher than the Zn biofortification target 40 mg kg-1, while that of LZn was lower than 40 mg kg-1. Metagenomic sequencing and analysis showed large microbiome difference between wheat rhizosphere and bulk soil but small difference between HZn and LZn. Most of the rhizosphere-enriched microbes in HZn and LZn were in common, including many of the previously reported soil Zn-mobilizing microbes. Notably, 30 of the 32 rhizosphere-enriched species exhibiting different abundances between HZn and LZn possess the functional genes involved in soil Zn mobilization, especially the synthesis and exudation of organic acids and siderophores. Most of the abundant potential Zn-mobilizing species were positively correlated with grain Zn concentration and formed a module with strong interspecies relations in the co-occurrence network of abundant rhizosphere-enriched microbes. The potential Zn-mobilizing species, especially Massilia and Pseudomonas, may contribute to the cultivars' variation in grain Zn concentration, and they deserve further investigation in future studies on Zn biofortification.

13.
Front Microbiol ; 12: 660225, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122376

RESUMO

Anaerobic digestion (AD) has been widely used to resolve the problem of organic wastes worldwide. Previous studies showed that the types of feedstock have a great influence on the AD microbiome, and a huge number of AD populations are migrated from upstream feedstocks. However, the changes of microbial compositions from feedstock to AD digestate are still less understood. We collected feedstock samples from 56 full-scale biogas plants, generated 1,716 Gb feedstock metagenomic data in total, and constructed the first comprehensive microbial gene catalog of feedstock containing 25.2 million genes. Our result indicated that the predominant phyla in feedstock are Firmicutes, Bacteroidetes, and Proteobacteria, which is similar to that in AD digestate, and the microbial diversity of feedstock samples is higher than that of AD digestate samples. In addition, the relative abundance of most genes involved in methanogenesis increase from feedstock to AD digestate. Besides, the amount of antibiotic resistance genes (ARGs) and pathogenic bacteria in AD are effectively reduced compared to feedstocks. This study provides a comprehensive microbial gene catalog of feedstock, and deepens the understanding of variation of microbial communities from feedstock to AD digestate of full-scale AD. The results also suggest the potential of AD to reduce the level of ARGs and pathogens in animal manure.

14.
Gigascience ; 10(1)2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33506264

RESUMO

BACKGROUND: Biogas production with anaerobic digestion (AD) is one of the most promising solutions for both renewable energy production and resolving the environmental problem caused by the worldwide increase in organic waste. However, the complex structure of the microbiome in AD is poorly understood. FINDINGS: In this study, we constructed a microbial gene catalog of AD (22,840,185 genes) based on 1,817 Gb metagenomic data derived from digestate samples of 56 full-scale biogas plants fed with diverse feedstocks. Among the gene catalog, 73.63% and 2.32% of genes were taxonomically annotated to Bacteria and Archaea, respectively, and 57.07% of genes were functionally annotated with KEGG orthologous groups. Our results confirmed the existence of core microbiome in AD and showed that the type of feedstock (cattle, chicken, and pig manure) has a great influence on carbohydrate hydrolysis and methanogenesis. In addition, 2,426 metagenome-assembled genomes were recovered from all digestate samples, and all genomes were estimated to be ≥80% complete with ≤10% contamination. CONCLUSIONS: This study deepens our understanding of the microbial composition and function in the AD process and also provides a huge number of reference genome and gene resources for analysis of anaerobic microbiota.


Assuntos
Biocombustíveis , Reatores Biológicos , Anaerobiose , Animais , Bovinos , Genes Microbianos , Esterco , Suínos
15.
Mol Ecol Resour ; 21(1): 287-300, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32939994

RESUMO

Apolygus lucorum (Miridae) is an omnivorous pest that occurs worldwide and is notorious for the serious damage it causes to various crops and substantial economic losses. Although some studies have examined the biological characteristics of the mirid bug, no reference genome is available in Miridae, limiting in-depth studies of this pest. Here, we present a chromosome-scale reference genome of A. lucorum, the first sequenced Miridae species. The assembled genome size was 1.02 Gb with a contig N50 of 785 kb. With Hi-C scaffolding, 1,016 Mb contig sequences were clustered, ordered and assembled into 17 large scaffolds with scaffold N50 length 68 Mb, each corresponding to a natural chromosome. Numerous transposable elements occur in this genome and contribute to the large genome size. Expansions of genes associated with omnivorousness and mesophyll feeding such as those related to digestion, chemosensory perception, and detoxification were observed in A. lucorum, suggesting that gene expansion contributed to its strong environmental adaptability and severe harm to crops. We clarified that a salivary enzyme polygalacturonase is unique in mirid bugs and has significantly expanded in A. lucorum, which may contribute to leaf damage from this pest. The reference genome of A. lucorum not only facilitates biological studies of Hemiptera as well as an understanding of the damage mechanism of mesophyll feeding, but also provides a basis on which to develop efficient control technologies for mirid bugs.


Assuntos
Genoma de Inseto , Herbivoria , Heterópteros , Animais , Produtos Agrícolas , Elementos de DNA Transponíveis , Heterópteros/genética , Poligalacturonase , Saliva/enzimologia
16.
Mol Ecol Resour ; 21(2): 478-494, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33000522

RESUMO

Whole-genome duplication (WGD), contributing to evolutionary diversity and environmental adaptability, has been observed across a wide variety of eukaryotic groups, but not in molluscs. Molluscs are the second largest animal phylum in terms of species numbers, and among the organisms that have successfully adapted to the nonmarine realm through aquatic-terrestrial (A-T) transition. We assembled a chromosome-level reference genome for Achatina immaculata, a globally invasive species, and compared the genomes of two giant African snails (A. immaculata and Achatina fulica) to other available mollusc genomes. Macrosynteny, colinearity blocks, Ks peak and Hox gene clusters collectively suggested a WGD event in the two snails. The estimated WGD timing (~70 million years ago) was close to the speciation age of the Sigmurethra-Orthurethra (within Stylommatophora) lineage and the Cretaceous-Tertiary (K-T) mass extinction, indicating that the WGD may have been a common event shared by all Sigmurethra-Orthurethra species and conferred ecological adaptability allowing survival after the K-T extinction event. Furthermore, the adaptive mechanism of WGD in terrestrial ecosystems was confirmed by the presence of gene families related to the respiration, aestivation and immune defence. Several mucus-related gene families expanded early in the Stylommatophora lineage, and the haemocyanin and phosphoenolpyruvate carboxykinase families doubled during WGD, and zinc metalloproteinase genes were highly tandemly duplicated after WGD. This evidence suggests that although WGD may not have been the direct driver of the A-T transition, it played an important part in the terrestrial adaptation of giant African snails.


Assuntos
Evolução Biológica , Ecossistema , Duplicação Gênica , Caramujos/genética , Animais , Genoma , Filogenia , Caramujos/classificação
17.
Front Microbiol ; 11: 1462, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733410

RESUMO

Mikania micrantha is a noxious invasive plant causing enormous economic losses and ecological damage. Soil microbiome plays an important role in the invasion process of M. micrantha, while little is known about its rhizosphere microbiome composition and function. In this study, we identified the distinct rhizosphere microbial communities of M. micrantha, by comparing them with those of two coexisting native plants (Polygonum chinense and Paederia scandens) and the bulk soils, using metagenomics data from field sampling and pot experiment. As a result, the enrichment of phosphorus-solubilizing bacteria Pseudomonas and Enterobacter was consistent with the increased soil available phosphorus in M. micrantha rhizosphere. Furthermore, the pathogens of Fusarium oxysporum and Ralstonia solanacearum and pathogenic genes of type III secretion system (T3SS) were observed to be less abundant in M. micrantha rhizosphere, which might be attributed to the enrichment of biocontrol bacteria Catenulispora, Pseudomonas, and Candidatus Entotheonella and polyketide synthase (PKS) genes involved in synthesizing antibiotics and polyketides to inhibit pathogens. These findings collectively suggested that the enrichment of microbes involved in nutrient acquisition and pathogen suppression in the rhizosphere of M. micrantha largely enhances its adaptation and invasion to various environments.

18.
Nat Commun ; 11(1): 340, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31953413

RESUMO

Mikania micrantha is one of the top 100 worst invasive species that can cause serious damage to natural ecosystems and substantial economic losses. Here, we present its 1.79 Gb chromosome-scale reference genome. Half of the genome is composed of long terminal repeat retrotransposons, 80% of which have been derived from a significant expansion in the past one million years. We identify a whole genome duplication event and recent segmental duplications, which may be responsible for its rapid environmental adaptation. Additionally, we show that M. micrantha achieves higher photosynthetic capacity by CO2 absorption at night to supplement the carbon fixation during the day, as well as enhanced stem photosynthesis efficiency. Furthermore, the metabolites of M. micrantha can increase the availability of nitrogen by enriching the microbes that participate in nitrogen cycling pathways. These findings collectively provide insights into the rapid growth and invasive adaptation.


Assuntos
Genoma de Planta , Mikania/crescimento & desenvolvimento , Mikania/genética , Mikania/fisiologia , Vias Biossintéticas/genética , Vias Biossintéticas/fisiologia , Ciclo do Carbono , Dióxido de Carbono/metabolismo , Cromossomos de Plantas , Ecologia , Ecossistema , Evolução Molecular , Genômica , Espécies Introduzidas , Nitrogênio/metabolismo , Ciclo do Nitrogênio , Fotossíntese/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Análise de Sequência de DNA , Transcriptoma
19.
Microbiome ; 6(1): 211, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30482240

RESUMO

BACKGROUND: Sub-therapeutic antibiotics are widely used as growth promoters in the poultry industry; however, the resulting antibiotic resistance threatens public health. A plant-derived growth promoter, Macleaya cordata extract (MCE), with effective ingredients of benzylisoquinoline alkaloids, is a potential alternative to antibiotic growth promoters. Altered intestinal microbiota play important roles in growth promotion, but the underlying mechanism remains unknown. RESULTS: We generated 1.64 terabases of metagenomic data from 495 chicken intestinal digesta samples and constructed a comprehensive chicken gut microbial gene catalog (9.04 million genes), which is also the first gene catalog of an animal's gut microbiome that covers all intestinal compartments. Then, we identified the distinctive characteristics and temporal changes in the foregut and hindgut microbiota. Next, we assessed the impact of MCE on chickens and gut microbiota. Chickens fed with MCE had improved growth performance, and major microbial changes were confined to the foregut, with the predominant role of Lactobacillus being enhanced, and the amino acids, vitamins, and secondary bile acids biosynthesis pathways being upregulated, but lacked the accumulation of antibiotic-resistance genes. In comparison, treatment with chlortetracycline similarly enriched some biosynthesis pathways of nutrients in the foregut microbiota, but elicited an increase in antibiotic-producing bacteria and antibiotic-resistance genes. CONCLUSION: The reference gene catalog of the chicken gut microbiome is an important supplement to animal gut metagenomes. Metagenomic analysis provides insights into the growth-promoting mechanism of MCE, and underscored the importance of utilizing safe and effective growth promoters.


Assuntos
Benzilisoquinolinas/farmacologia , Galinhas/crescimento & desenvolvimento , Galinhas/microbiologia , Substâncias de Crescimento/farmacologia , Lactobacillus/crescimento & desenvolvimento , Extratos Vegetais/farmacologia , Animais , Microbioma Gastrointestinal/genética , Probióticos/farmacologia , Ranunculales/química
20.
Gigascience ; 7(9)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30107526

RESUMO

Background: The golden apple snail (Pomacea canaliculata) is a freshwater snail listed among the top 100 worst invasive species worldwide and a noted agricultural and quarantine pest that causes great economic losses. It is characterized by fast growth, strong stress tolerance, a high reproduction rate, and adaptation to a broad range of environments. Results: Here, we used long-read sequencing to produce a 440-Mb high-quality, chromosome-level assembly of the P. canaliculata genome. In total, 50 Mb (11.4%) repeat sequences and 21,533 gene models were identified in the genome. The major findings of this study include the recent explosion of DNA/hAT-Charlie transposable elements, the expansion of the P450 gene family, and the constitution of the cellular homeostasis system, which contributes to ecological plasticity in stress adaptation. In addition, the high transcriptional levels of perivitelline genes in the ovary and albumen gland promote the function of nutrient supply and defense ability in eggs. Furthermore, the gut metagenome also contains diverse genes for food digestion and xenobiotic degradation. Conclusions: These findings collectively provide novel insights into the molecular mechanisms of the ecological plasticity and high invasiveness.


Assuntos
Aclimatação/genética , Genoma , Espécies Introduzidas , Caramujos/genética , Estresse Fisiológico/genética , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA