Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(11)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37298358

RESUMO

Short-term heat stress can affect the growth of rice (Oryza sativa L.) seedlings, subsequently decreasing yields. Determining the dynamic response of rice seedlings to short-term heat stress is highly important for accelerating research on rice heat tolerance. Here, we observed the seedling characteristics of two contrasting cultivars (T11: heat-tolerant and T15: heat-sensitive) after different durations of 42 °C heat stress. The dynamic transcriptomic changes of the two cultivars were monitored after 0 min, 10 min, 30 min, 1 h, 4 h, and 10 h of stress. The results indicate that several pathways were rapidly responding to heat stress, such as protein processing in the endoplasmic reticulum, glycerophospholipid metabolism, and plant hormone signal transduction. Functional annotation and cluster analysis of differentially expressed genes at different stress times indicate that the tolerant cultivar responded more rapidly and intensively to heat stress compared to the sensitive cultivar. The MAPK signaling pathway was found to be the specific early-response pathway of the tolerant cultivar. Moreover, by combining data from a GWAS and RNA-seq analysis, we identified 27 candidate genes. The reliability of the transcriptome data was verified using RT-qPCR on 10 candidate genes and 20 genes with different expression patterns. This study provides valuable information for short-term thermotolerance response mechanisms active at the rice seedling stage and lays a foundation for breeding thermotolerant varieties via molecular breeding.


Assuntos
Oryza , Transcriptoma , Oryza/metabolismo , Reprodutibilidade dos Testes , Melhoramento Vegetal , Resposta ao Choque Térmico/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Plântula/genética
2.
Physiol Plant ; 174(4): e13727, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35657636

RESUMO

DNA methylation and histone modification enable plants to rapidly adapt to adverse temperature stresses, including low temperature (LT) and high temperature (HT) stress. In this study, we conducted physiological, epigenetic, and transcriptomic analyses of barley seedlings grown under control (22°C), mild low temperature (MLT, 14°C) and HT (38°C) conditions to elucidate the underlying molecular mechanisms. Compared to MLT, HT implies greater deleterious effects on barley seedlings' growth. The methylation-sensitive amplification polymorphism analysis showed that MLT induced more DNA methylation and HT more DNA demethylation compared to control. Besides, the higher levels of H3K9ac and H3K4me3 under HT compared to MLT stresses might lead to the loosening of chromatin and, subsequently, the activation of gene expression. Consistently, the transcriptome analysis revealed that there were more differentially expressed genes (DEGs) in plants subjected to HT stress than MLT stress compared to control. The common and unique pathways of these DEGs between MLT and HT were also analyzed. Transcription factors, such as ERF, bHLH, NAC, HSF, and MYB, were most involved in MLT and HT stress. The underlying gene regulation networks of epigenetic modulation-related genes were further explored by weight gene co-expression network analysis. Our study provides new insights into the understanding of epigenetic regulation responses to temperature stress in barley, which will lead to improved strategies for the development of cold- and heat-tolerant barley varieties for sustainable barley production in a climate-changing world.


Assuntos
Hordeum , Transcriptoma , Epigênese Genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Resposta ao Choque Térmico , Hordeum/genética , Hordeum/metabolismo , Plântula/genética , Temperatura , Transcriptoma/genética
3.
J Anal Methods Chem ; 2021: 5599388, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336359

RESUMO

The chemical method for the determination of the resistant starch (RS) content in grains is time-consuming and labor intensive. Near-infrared (NIR) and attenuated total reflectance mid-infrared (ATR-MIR) spectroscopy are rapid and nondestructive analytical techniques for determining grain quality. This study was the first report to establish and compare these two spectroscopic techniques for determining the RS content in wheat grains. Calibration models with four preprocessing techniques based on the partial least squares (PLS) algorithm were built. In the NIR technique, the mean normalization + Savitzky-Golay smoothing (MN + SGS) preprocessing technique had a higher coefficient of determination (R c 2 = 0.672; R p 2 = 0.552) and a relative lower root mean square error value (RMSEC = 0.385; RMSEP = 0.459). In the ATR-MIR technique, the baseline preprocessing method exhibited a better performance regarding to the values of coefficient of determination (R c 2 = 0.927; R p 2 = 0.828) and mean square error value (RMSEC = 0.153; RMSEP = 0.284). The validation of the developed best NIR and ATR-MIR calibration models showed that the ATR-MIR best calibration model has a better RS prediction ability than the NIR best calibration model. Two high grain RS content wheat mutants were screened out by the ATR-MIR best calibration model from the wheat mutant library. There was no significant difference between the predicted values and chemical measured values in the two high RS content mutants. It proved that the ATR-MIR model can be a perfect substitute in RS measuring. All the results indicated that the ATR-MIR spectroscopy with improved screening efficiency can be used as a fast, rapid, and nondestructive method in high grain RS content wheat breeding.

4.
Biochem Cell Biol ; 91(3): 187-93, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23668792

RESUMO

Quinoid dihydropteridine reductase (QDPR) is an enzyme involved in the metabolic pathway of tetrahydrobiopterin (BH4). BH4 is an essential cofactor of nitric oxide synthase (NOS) and can catalyze arginine to citrulline to release nitric oxide. Point mutations of QDPR have been found in the renal cortex of spontaneous Otsuka Long Evans Tokushima Fatty (OLETF) diabetic rats. However, the role of QDPR in DN is not clear. This study investigates the effects of QDPR overexpression and knockdown on gene expression in the kidney. Rat QDPR cDNA was cloned into pcDNA3.1 vector and transfected in human kidney cells (293T). The expression of NOS, transforming growth factor beta 1 (TGF-ß1), Smad3, and NADPH oxidase were examined by RT-PCR and Western blot analyses. BH4 was assayed by using ELISA. Expression of QDPR was significantly decreased and TGF-ß1 and Smad3 were increased in the renal cortex of diabetic rats. Transfection of QDPR into 293T cells increased the abundance of QDPR in cytoplasm and significantly reduced the expression of TGF-ß1, Smad3, and the NADPH oxidases NOX1 and NOX4. Moreover, abundance of neuronal NOS (nNOS) mRNA and BH4 content were significantly increased. Furthermore, inhibition of QDPR resulted in a significant increase in TGF-ß1 expression. In conclusion, QDPR might be an important factor mediating diabetic nephropathy through its regulation of TGF-ß1/Smad3 signaling and NADPH oxidase.


Assuntos
Di-Hidropteridina Redutase/metabolismo , Expressão Gênica , Rim/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Primers do DNA , Humanos , Rim/citologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA