Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Zhonghua Nan Ke Xue ; 30(3): 209-216, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-39177386

RESUMO

OBJECTIVE: To investigate the safety and clinical effect of testis-sparing microsurgery (TSMS) in the treatment of benign testis tumor (BTT). METHODS: We retrospectively analyzed the clinical data on 16 cases of BTT treated in the Department of Andrology of the Affiliated Hospital of Qingdao University from October 2020 to February 2023. The median age of the patients was 23 years. All the tumors were unilateral, 7 in the left and 9 in the right side, with a median diameter of 1.85 cm (1.0-3.5 cm). The patients all underwent color Doppler flow imaging (CDFI), MRI, semen analysis and examination of serum T, alpha-fetoprotein (AFP), human chorionic gonadotropin (HCG) and lactate dehydrogenase (LDH), followed by TSMS. The boundaries between the tumors and normal testis tissue were accurately identified under the microscope, and the tumors and the adjacent normal testis tissue 2 mm from their margins were excised completely. Bipolar coagulation forceps were used for wound hemostasis to maximally preserve the normal testis tissue. The resected specimens were subjected to fast frozen pathology intraoperatively, and the patients were followed up for 14-40 months by regular scrotal CDFI, MRI and examinations of serum T and semen parameters. RESULTS: The levels of serum T, AFP, HCG and LDH and semen parameters were all within the normal range preoperatively. TSMS were successfully completed in all the cases, and all were pathologically confirmed as BTT according to the latest edition of WHO Classification of Tumors: Urinary and Male Genital Tumors. CDFI showed normal blood supply within the testis tissue at 1 month after surgery. No signs of intra-testicular tumor residue, recurrence or metastasis, nor significant changes in the levels of serum T, AFP, HCG or LDH or semen parameters were observed during the follow-up as compared with the baseline. Natural conception was achieved in 2 cases at 16 and 18 months respectively after surgery. CONCLUSION: BTT can be differentially diagnosed by CDFI and MRI before surgery and confirmed by histopathology. TSMS can achieve complete excision of the tumor, maximal sparing of the normal testis tissue and thereby effective preservation of male fertility.


Assuntos
Microcirurgia , Neoplasias Testiculares , Testículo , Humanos , Masculino , Microcirurgia/métodos , Neoplasias Testiculares/cirurgia , Estudos Retrospectivos , Adulto Jovem , Testículo/cirurgia , Adulto , alfa-Fetoproteínas/análise , Tratamentos com Preservação do Órgão/métodos
2.
Langmuir ; 40(32): 17038-17048, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39096502

RESUMO

The practical application of Zn-air batteries require exploring cost-effective and durable bifunctional electrocatalysts. However, the simultaneous preparation of catalysts with bifunctional activities for oxygen reduction reaction (ORR) and oxygen precipitation reaction (OER) remains challenging. Herein, we synthesized a novel hybrid catalyst (FePc/NiCo/CNT), which couples NiCo alloy with FePc through electrostatic interaction. The interaction between FePc and NiCo alloy can enhance the intrinsic catalytic activity of the active site Fe-N4 and prevent the electrolyte corrosion of the metal alloy, ultimately improving the stability of the catalyst by the microenvironment-tailoring strategy. The resultant FePc/NiCo/CNT catalyst exhibits outstanding oxygen reduction reaction (ORR) activity with a half-wave potential of 0.88 V, which is attributed to the abundant Fe-Nx active sites. Furthermore, the electron interactions between NiCo/CNT and FePc accelerate electron transfer and enhance the activation of oxygen intermediates, consequently boosting the OER activity with an overpotential of 260 mV at 10 mA cm-2. The Zn-air batteries assembled with FePc/NiCo/CNT show a high power density of 175.1 mW cm-2 and excellent cycling stability for up to 430 h at 20 mA cm-2. The preparation of oxygen electrode catalysts for renewable clean energy devices can be made more convenient with this directly engineered strategy for ORR and OER active centers.

3.
Thromb Res ; 241: 109111, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39098189

RESUMO

Thrombosis is the primary cause of death in patients with cancer. Resveratrol inhibits platelet activation, a crucial pathophysiological basis of thrombosis, in healthy individuals. However, its effects and mechanisms of action in patients with colon cancer remain unknown. Here, we investigated the effect of resveratrol on platelet adhesion and aggregation in patients with colon cancer. Through numerous in vitro and in vivo analyses, including flow cytometry, western blotting, ELISA, and immunofluorescence and colon cancer rat models, we demonstrated that resveratrol reduced thrombosis in patients with colon cancer by inhibiting the phosphorylation of the MAPK and activating the cyclic-GMP/vasodilator-stimulated phosphoprotein pathway. These findings demonstrate the potential of resveratrol in reducing thrombosis in patients with colon cancer and could be used to develop novel therapeutic strategies for this condition.

4.
ACS Appl Mater Interfaces ; 16(28): 36295-36303, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38973617

RESUMO

The rational design of cost-effective and highly active electrocatalysts becomes the crucial energy storage technology to boost the kinetics of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), which hinders the large-scale application of metal-air batteries under the situation of increasingly pressing energy anxiety. Herein, the Co-based ZIF introduced the moderate amount of Cu2+-derived Cu/Co metal nanoparticles (NPs) embedded in carbon frameworks after high-temperature calcination. The Co-O bond on the surface of Co nanoparticles is modulated by adjacent Cu nanoparticles with the surface Cu-O bonds. The resulted increase of the Co2+/Co3+ ratio in 0.1CuCo-NC enhances the ORR/OER bifunctional catalytic kinetics along with the ΔE of 0.639 V. In situ Raman spectra of the catalyst on the three-electrode system as well as in the driven zinc-air battery (ZAB) show that the Co-O active sites regulated by Cu nanoparticles with Cu-O bonds maintain a periodic lattice expansion and compression during discharging and charging. The zinc-air battery based on 0.1CuCo-NC has a peak power density of up to 198.3 mW cm-2, a mass-specific capacity of 798.2 mAh g-1, and a cycling stability of 923 h at room temperature. This work makes up the research gap of a Co-based metal-organic framework (MOF)-derived catalyst regulated by a transition metal.

5.
Small ; : e2402028, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970557

RESUMO

2D-3D tin-based perovskites are considered as promising candidates for achieving efficient lead-free perovskite solar cells (PSCs). However, the existence of multiple low-dimensional phases formed during the film preparation hinders the efficient transport of charge carriers. In addition, the non-homogeneous distribution of low-dimensional phases leads to lattice distortion and increases the defect density, which are undesirable for the stability of tin-based PSCs. Here, mixed spacer cations [diethylamine (DEA+) and phenethylamine (PEA+)] are introduced into tin perovskite films to modulate the distribution of the 2D phases. It is found that compared to the film with only PEA+, the combination of DEA+ and PEA+ favors the formation of homogeneous low-dimensional perovskite phases with three octahedral monolayers (n = 3), especially near the bottom interface between perovskite and hole transport layer. The homogenization of 2D phases help improve the film quality with reduced lattice distortion and released strain. With these merits, the tin PSC shows significantly improved stability with 94% of its initial efficiency retained after storing in a nitrogen atmosphere for over 4600 h, and over 80% efficiency maintained after continuous illumination for 400 h.

6.
Angew Chem Int Ed Engl ; : e202411361, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39073279

RESUMO

Perovskite light-emitting diodes (PeLEDs) that can be air-processed promises the development of displaying optoelectronic device, while is challenged by technical difficulty on both the active layer and hole transport layer (HTL) caused by the unavoidable humidity interference. Here, we propose and validate that, planting the polymer brush with tailored functional groups in inorganic HTL, provides unique bilateral embedded anchoring that is capable of simultaneously addressing the n phases crystallization rates in the active layer as well as the deteriorated particulate surface defects in HTL. Exemplified by zwitterionic polyethyleneimine-sulfonate (PEIS) in present study, its implanting in NiOx HTL offers abundant nuclei sites of amino and sulfonate groups that balance the growth rate of different n phases in quasi-2D perovskite films. Moreover, the PEIS effectively nailed the interfacial contact between perovskite and NiOx, and reduced the particulate surface defects in HTL, leading to the enhanced PLQY and stability of large-area blue perovskite film in ambient air. By virtue of these merits, present work achieves the first demonstration of the air-processed blue PeLEDs in large emitting area of 1.0 cm2 with peak external quantum efficiency (EQE) of 2.09 %, which is comparable to the similar pure-bromide blue PeLEDs fabricated in glovebox.

7.
Telemed Rep ; 5(1): 212-218, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39081454

RESUMO

Background: There has been an exponential growth in the use of telemedicine services to provide clinical care. However, the safety and effectiveness of telemedicine in cancer-related colostomy care during the early stages of discharge remain unclear. This study aimed to support that the safety and effectiveness of telemedicine in cancer-related colostomy care were not inferior to those of outpatient care. Methods: This was a prospective randomized noninferiority study. A total of 76 consecutive patients who underwent cancer-related colostomy stoma were enrolled and randomly divided into a telemedicine group or an outpatient group with an equal allocation ratio (1:1). The outpatient group was provided in-person interview mode colostomy care, whereas the telemedicine group was provided video interview mode colostomy care. The stoma-related complications, self-care ability, and quality of life reflected the safety and effectiveness of colostomy care in the early stages of discharge. Results: The incidence of stoma-related complications within two weeks and one month after discharge was not significantly different between the two groups (p 2-weeks = 0.772 and p 1-month = 0.760). The mean NCI-CTCAE score for stoma-related complications was less than level 2. The ESCA and C-COH-QOL-OQ scores were not significantly different between the telemedicine and outpatient groups at two weeks and one month after discharge (all p > 0.05). Conclusion: The results revealed that the safety and effectiveness of telemedicine for cancer-related colostomies in the early stages of discharge were not inferior to those of outpatient care alone.

8.
Toxics ; 12(7)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39058130

RESUMO

The substitution of ethyl acetate for ammonia in NH3-SCR provides a novel strategy for the simultaneous removal of VOCs and NO. In this study, three distinct types of biochar were fabricated through pyrolysis at 700 °C. MnOx and TiO2 were sequentially loaded onto these biochar substrates via a hydrothermal process, yielding a family of biochar-based catalysts with optimized dosages. Upon exposure to xenon lamp irradiation at 240 °C, the biochar catalyst designated as 700-12-3GN, derived from Ginkgo shells, demonstrated the highest catalytic activity when contrasted with its counterparts prepared from moso bamboo and loofah. The conversion efficiencies for NO and ethyl acetate (EA) peaked at 73.66% and 62.09%, respectively, at a catalyst loading of 300 mg. The characterization results indicate that the 700-12-3GN catalyst exhibits superior activity, which can be attributed to the higher concentration of Mn4+ and Ti4+ species, along with its superior redox properties and suitable elemental distribution. Notably, the 700-12-3GN catalyst has the smallest specific surface area but the largest pore volume and average BJH pore size, indicating that the specific surface area is not the predominant factor affecting catalyst performance. Instead, pore volume and average BJH pore diameter appear to be the more influential parameters. This research provides a reference and prospect for the resource utilization of biochar and the development of photothermal co-catalytic ethyl acetate and NO at low cost.

9.
ACS Appl Mater Interfaces ; 16(30): 39664-39672, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39025786

RESUMO

Reducing the crystal size of perovskites to the strong quantum confinement regime is an effective way to realize blue luminescence for light-emitting applications. However, challenges remain in directly constraining the crystal growth during film preparation to achieve three-dimensional quantum confinement, and the widely used long-chain ligands may bring difficulties for charge transport and unfavorably affect the device performance. Herein, we report a novel strategy for fabricating strongly confined blue-emitting perovskite nanocrystalline films via synergistic steric effect modulation by precursors and antisolvents. We synthesize cesium pentafluoropropanoate (CsPFPA) as a new type of precursor agent, where the steric effect of the PFPA group can help constrain the growth of perovskite crystals and passivate the defects. Furthermore, different types of antisolvents with varied molecular sizes and steric hindrance are used to regulate the size of perovskite crystals and improve film quality. Consequently, highly emissive blue perovskite films are realized with the emission wavelength effectively tuned in the blue region by varying the concentration of CsPFPA as well as the type of antisolvents. Based on the strongly confined perovskite films, blue light-emitting diodes (LEDs) are constructed, showing good spectral tunability and stability in the electroluminescence. This work demonstrates a novel pathway for developing bright perovskite blue emitters for LEDs, which may potentially advance their future applications in display and lighting.

10.
Opt Express ; 32(8): 13574-13582, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38859324

RESUMO

The vortex electromagnetic wave has shown great prospects of radar applications, due to the orbital angular momentum (OAM) degree of freedom. However, the radiation energy convergence of the OAM beam remains a hard problem to be solved for radar target imaging in realistic scenario. In this paper, an OAM beam generation method is developed exploiting the OAM and waveform degrees of freedom simultaneously, which can collimate the beams with different OAM modes. Furthermore, the echo demodulation and the imaging methods are proposed to reconstruct the target profiles in the range and azimuth domain. Simulation and experimental results both validate that the OAM-based radar imaging can achieve azimuthal super-resolution beyond the diffraction limit of the array aperture. This work can advance the system design of vortex electromagnetic wave radar and its real-world applications.

11.
ACS Appl Mater Interfaces ; 16(23): 30128-30136, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38831609

RESUMO

The utilization of solid polymer electrolytes (SPEs) in all-solid-state sodium metal batteries has been extensively explored due to their excellent flexibility, processability adaptability to match roll-to-roll manufacturing processes, and good interfacial contact with a high-capacity Na anode; however, SPEs are still impeded by their inadequate mechanical strength, excessive thickness, and poor stability with Na anodes. Herein, a robust, thin, and cost-effective polyethylene (PE) film is employed as a skeleton for infiltrating poly(ethylene oxide)-sodium bis(trifluoromethanesulfonyl)imide (PEO/NaTFSI) to fabricate PE-PEO/NaTFSI SPE. The resulting SPE features a remarkable thickness of 25 µm, lightweight property (2.1 mg cm-2), superior mechanical strength (tensile strength = 100.3 MPa), and good flexibility. The SPE also shows an ionic conductivity of 9.4 × 10-5 S cm-1 at 60 °C and enhanced interfacial stability with a sodium metal anode. Benefiting from these advantages, the assembled Na-Na symmetric cells with PE-PEO/NaTFSI show a high critical current density (1 mA cm-2) and excellent long-term cycling stability (3000 h at 0.3 mA cm-2). The all-solid-state Na||PE-PEO/NaTFSI||Na3V2(PO4)3 coin cells exhibit a superior cycling performance, retaining 93% of the initial capacity for 190 cycles when matched with a 6 mg cm-2 cathode loading. Meanwhile, the pouch cell can work stably after abuse testing, proving its flexibility and safety. This work offers a promising strategy to simultaneously achieve thin, high-strength, and safe solid-state electrolytes for all-solid-state sodium metal batteries.

12.
J Colloid Interface Sci ; 674: 249-255, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38936081

RESUMO

Polypyrrole-coated CuInS2 (CuInS2@PPy) composite was prepared through the chemical vapor transport method and subsequent in situ polymerized coating strategy. In this unique nanoarchitecture, the PPy coating layer plays a crucial role in improving the conductivity of the composite, suppressing the volume change of CuInS2, and maintaining the structural integrity of electrode material upon cycling. In addition, the electrochemical reaction mechanism and kinetics of CuInS2@PPy were investigated in-depth. Benefitting from the synergism of its combinational intercalation-conversion-intercalation reaction mechanism and the high conductivity of the PPy coating layer, CuInS2@PPy electrode exhibits superior rate capability and cycling stability for sodium-ion batteries, with a capacity of 404.8 mA h g-1 at 4 A g-1 over 2500 cycles.

13.
ACS Omega ; 9(24): 26205-26212, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38911774

RESUMO

In this report, 38 nm-thick amorphous zinc-tin oxide (a-ZTO) films were deposited by radio frequency magnetron cosputtering. a-ZTO films were annealed by in situ monitoring of the sheet resistance improvements during the annealing process. A sharp drop in the slope of the sheet resistance curve was observed. The activation energies for the sheet resistance slope were calculated. The activation energy of the reaction for a sharp drop in the slope is much higher than the activation energy for the rest of the slope. Based on the activation energy values, six annealing temperatures were selected to saturate the highest conductivity at lower annealing temperatures and to identify the effects associated with annealing time. We found a direct correlation between annealing temperatures and the duration of the annealing treatment. a-ZTO films with a high conductivity of 320 S/cm were achieved by annealing at a temperature of 220 °C. It is noteworthy that the annealing temperature of 220 °C has clearly replaced the temperature of 300 °C. An irreversible decrease in resistivity was observed for all films. The conduction mechanism of films before and after annealing was determined. We confirm that all films individually exhibit semiconducting and metallic behaviors in the conduction mechanism before and after the lowest resistivity saturation.

14.
Anal Chem ; 96(27): 10962-10968, 2024 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-38925633

RESUMO

Overexpression of receptor tyrosine kinases (RTKs) or binding to ligands can lead to the formation of specific unliganded and liganded RTK dimers, and these two RTK dimers are potential targets for preventing tumor metastasis. Traditional RTK dimer inhibitor analysis was mostly based on end point assays, which required cumbersome cell handling and behavior monitoring. There are still challenges in developing intuitive process-based analytical methods to study RTK dimer inhibitors, especially those used to visually distinguish between unliganded and liganded RTK dimer inhibitors. Herein, taking the mesenchymal-epithelial transition factor (MET) receptor, an intuitive method for evaluating MET inhibitors has been developed based on atomic force microscopy (AFM) lifetime analysis. The time interval between the start of the force and the bond break point was regarded as the bond lifetime, which could reflect the stability of the MET dimer. The results showed that there was a significant difference in the lifetime (τ) of unliganded MET dimers (τ1 = 207.87 ± 4.69 ms) and liganded MET dimers (τ2 = 330.58 ± 15.60 ms) induced by the hepatocyte growth factor, and aptamer SL1 could decrease τ1 and τ2, suggesting that SL1 could inhibit both unliganded and liganded MET dimers. However, heparin only decreased τ2, suggesting that it could inhibit only the liganded MET dimer. AFM-based lifetime analysis methods could monitor RTK dimer status rather than provide overall average results, allowing for intuitive process-based analysis and evaluation of RTK dimers and related inhibitors at the single-molecule level. This study provides a novel complementary strategy for simple and intuitive RTK inhibitor research.


Assuntos
Microscopia de Força Atômica , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-met , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Humanos , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/metabolismo , Multimerização Proteica/efeitos dos fármacos , Ligantes , Fator de Crescimento de Hepatócito/metabolismo , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo
15.
Angew Chem Int Ed Engl ; : e202409689, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872358

RESUMO

Inverted NiOx-based perovskite solar cells (PSCs) exhibit considerable potential because of their low-temperature processing and outstanding excellent stability, while is challenged by the carriers transfer at buried interface owing to the inherent low carrier mobility and abundant surface defects that directly deteriorates the overall device fill factor. Present work demonstrates a chemical linker with the capability of simultaneously grasping NiOx and perovskite crystals by forming a Ni-S-Pb bridge at buried interface to significantly boost the carriers transfer, based on a rationally selected molecule of 1,3-dimethyl-benzoimidazol-2-thione (NCS). The constructed buried interface not only reduces the pinholes and needle-like residual PbI2 at the buried interface, but also deepens the work function and valence band maximum positions of NiOx, resulting in a smaller VBM offset between NiOx and perovskite film. Consequently, the modulated PSCs achieved a high fill factor up to 86.24 %, which is as far as we know the highest value in records of NiOx-based inverted PSCs. The NCS custom-tailored PSCs and minimodules (active area of 18 cm2) exhibited a champion efficiency of 25.05 % and 21.16 %, respectively. The unencapsulated devices remains over 90 % of their initial efficiency at maximum power point under continuous illumination for 1700 hours.

16.
Angew Chem Int Ed Engl ; : e202407508, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877782

RESUMO

All-inorganic cesium lead triiodide perovskites (CsPbI3) have attracted increasing attention due to their good thermal stability, remarkable optoelectronic properties, and adaptability in tandem solar cells. However, N2-filled glovebox is generally required to strictly control the humidity during film fabrication due to the moisture-induced black-to-yellow phase transition, which remains a great hinderance for further commercialization. Herein, we report an effective approach via incorporating multifunctional ethacridine lactate (EAL) to mitigate moisture invasion and enable the fabrication of efficient inverted (p-i-n) CsPbI3 perovskite solar cells (PSCs) under ambient condition. It is revealed that the lactate anions accelerate the crystallization of CsPbI3, shortening the exposure time to moisture during film fabrication. Meanwhile, the conjugated backbone and multiple functional groups in the ethacridine cations can interact with I- and Pb2+ to reduce the undesired defects, stabilize the perovskite structure and facilitate the charge transport in the film. Moreover, EAL incorporation also leads to better energy alignment, thus favoring charge extraction at both upper and bottom interfaces. Consequently, the device efficiency and stability are enormously enhanced, with the champion efficiency reaching 21.08 %. This even surpasses the highest value reported for the devices fabricated in glovebox, representing a record efficiency of inverted all-inorganic PSCs.

17.
Nanomicro Lett ; 16(1): 191, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700650

RESUMO

Low-temperature processed electron transport layer (ETL) of TiO2 that is widely used in planar perovskite solar cells (PSCs) has inherent low carrier mobility, resulting in insufficient photogenerated electron transport and thus recombination loss at buried interface. Herein, we demonstrate an effective strategy of laser embedding of p-n homojunctions in the TiO2 ETL to accelerate electron transport in PSCs, through localized build-in electric fields that enables boosted electron mobility by two orders of magnitude. Such embedding is found significantly helpful for not only the enhanced crystallization quality of TiO2 ETL, but the fabrication of perovskite films with larger-grain and the less-trap-states. The embedded p-n homojunction enables also the modulation of interfacial energy level between perovskite layers and ETLs, favoring for the reduced voltage deficit of PSCs. Benefiting from these merits, the formamidinium lead iodide (FAPbI3) PSCs employing such ETLs deliver a champion efficiency of 25.50%, along with much-improved device stability under harsh conditions, i.e., maintain over 95% of their initial efficiency after operation at maximum power point under continuous heat and illumination for 500 h, as well as mixed-cation PSCs with a champion efficiency of 22.02% and over 3000 h of ambient storage under humidity stability of 40%. Present study offers new possibilities of regulating charge transport layers via p-n homojunction embedding for high performance optoelectronics.

18.
ACS Appl Mater Interfaces ; 16(22): 28771-28779, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38795117

RESUMO

Blue perovskite light-emitting diodes (LEDs) have emerged as promising candidates for full-color display and lighting applications. However, the fabrication of blue-emitting perovskite films typically requires an inert environment, leading to increased complexity and cost in the manufacturing process, which is undesirable for applications of perovskite LEDs. Herein, we report a strategy to fabricate bright blue-emitting perovskite films in ambient air by incorporating phosphonic chlorides in a perovskite precursor solution. We used two different phosphonic chlorides, diphenylphosphonic chloride (DPPC) and phenylphosphonic dichloride (PPDC), and comparatively studied their effects on the properties of perovskite films and the blue LEDs. It is found that PPDC possesses a stronger chlorination ability due to higher hydrolysis reactivity; meanwhile, it has a stronger interaction with the perovskite compared to DPPC, resulting in an improved film quality and enhanced blue emission with a photoluminescence quantum yield of 45%, which represents the record value for the air-processed blue perovskite films. Blue perovskite LEDs are fabricated, and the emission wavelengths are effectively tuned by controlling the concentration of phosphonic chlorides. Benefiting from the optimized perovskite films with reduced nonradiative recombination and promoted charge injection and transport, the PPDC-derived blue perovskite LEDs exhibit improved performance with an external quantum efficiency of 3.3% and 1.2% for the 490 and 480 nm emission wavelength, respectively.

19.
J Colloid Interface Sci ; 669: 137-145, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38713953

RESUMO

Iron sulfides have shown great potential as anode materials for sodium-ion batteries (SIBs) because of their high sodium storage capacity and low cost. Nevertheless, iron sulfides generally exhibit unsatisfied electrochemical performance induced by sluggish electron/ion transfer and severe pulverization upon the sodiation/desodiation process. Herein, we constructed a yolk-shell FeS@NC nanosphere with an N-doped carbon shell and FeS particle core via a simple hydrothermal method, followed by in-situ polymerization and vulcanization. The FeS particles intimately coupled with N-doped carbon can accelerate the electron transfer, avoid severe volume expansion, and maintain structural stability upon repeated sodiation/desodiation process. Furthermore, the small particle size of FeS can shorten ion-diffusion distance and facilitate ion transportation. Therefore, the FeS@NC nanosphere shows excellent cycling performance and superior rate capability that it can deliver a high capacity of 520.1 mAh g-1 over 800 cycles at 2.0 A g-1 and a remarkable capacity of 625.9 mAh g-1 at 10.0 A g-1.

20.
Biomed Chromatogr ; 38(7): e5892, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38769722

RESUMO

A simple and sensitive LC-tandem mass spectrometry method was established and validated for the determination of schaftoside in rat plasma. After prepared by protein precipitation with acetonitrile, schaftoside and internal standard were separated on a Waters HSS T3 column using acetonitrile containing 0.1% formic acid and 0.1% formic acid in water as the mobile phase by gradient elution. The method showed excellent linearity over the range of 0.5-500 ng/mL with acceptable intra- and inter-day precision, accuracy, matrix effect, and recovery. The stability assay indicated that schaftoside was stable during the sample acquisition, preparation, and storage. The method was applied to a pharmacokinetic study of schaftoside in rats. The result suggested that after intravenous administration at a dose of 1 mg/kg, schaftoside was quickly eliminated from the plasma with an elimination half-life of 0.58 h. After oral administration at doses of 5, 10, and 20 mg/kg, schaftoside was quickly absorbed into the plasma and reached the peak concentration (Cmax) of 45.1-104.99 ng/mL at 0.67-1.17 h. The increase of exposure (area under the curve) was linear with the increase of dose. The oral bioavailability was 0.42%-0.71% in the range of 5-20 mg/kg.


Assuntos
Disponibilidade Biológica , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Animais , Ratos , Masculino , Administração Oral , Espectrometria de Massas em Tandem/métodos , Reprodutibilidade dos Testes , Modelos Lineares , Cromatografia Líquida/métodos , Limite de Detecção , Sensibilidade e Especificidade , Glicosídeos/farmacocinética , Glicosídeos/sangue , Glicosídeos/química , Estabilidade de Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA