Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Sci Rep ; 14(1): 2677, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302642

RESUMO

Cellular automata (CA) are computational systems that exhibit complex global behavior arising from simple local rules, making them a fascinating candidate for various research areas. However, challenges such as limited flexibility and efficiency on conventional hardware platforms still exist. In this study, we propose a memristor-based circuit for implementing elementary cellular automata (ECA) by extending the stateful three-memristor logic operations derived from material implication (IMP) logic gates. By leveraging the inherent physical properties of memristors, this approach offers simplicity, minimal operational steps, and high flexibility in implementing ECA rules by adjusting the circuit parameters. The mathematical principles governing circuit parameters are analyzed, and the evolution of multiple ECA rules is successfully demonstrated, showcasing the robustness in handling the stochastic nature of memristors. This approach provides a hardware solution for ECA implementation and opens up new research opportunities in the hardware implementation of CA.

3.
Chemosphere ; 344: 140383, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37832891

RESUMO

Polyethylene (PE) mulch films have been widely used in agriculture and led to a significant pollution in cultivated soils. It is desirable to develop the sustainable method for the degradation of PE. As an environment friendly approach, microbial or enzymatic degradation of PE could meet this demanding. Thus, more microbial strains are required for illustrating biodegrading pathway and developing efficient biological method. In this study, Gordonia polyisoprenivorans B251 capable of degrading PE was isolated from bacterial enrichment with hexadecane as a sole carbon source for two years, in which genus Gordonia had dominated. As revealed by microbial growth curve, the strain B251 had the highest growth rate than other tested strains in the mediums either with hexadecane or PE particles as sole carbon source. The formation of biofilms in both enriched culture and G. polyisoprenivorans B251 pure culture attached to PE film was observed. The capability for PE degradation of individual strain was screened by 30-day incubation with PE film and confirmed by the presence of hydroxyl, carbonyl, carbon-carbon double bond and ether groups in FT-IR analysis and cracks on the surface of PE film observed by scanning electron microscopy (SEM). Therefore, Gordonia polyisoprenivorans, reported as their degradation of environmental contaminants in previous study, were also identified in current study as a candidate for polyethylene biodegradation.


Assuntos
Bactérias , Polietileno , Polietileno/química , Espectroscopia de Infravermelho com Transformada de Fourier , Biodegradação Ambiental , Biofilmes , Carbono
4.
ISME J ; 17(12): 2169-2181, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37775536

RESUMO

Nitrogen is a limiting nutrient for degraders function in hydrocarbon-contaminated environments. Biological nitrogen fixation by diazotrophs is a natural solution for supplying bioavailable nitrogen. Here, we determined whether the diazotroph Azotobacter chroococcum HN can provide nitrogen to the polycyclic aromatic hydrocarbon-degrading bacterium Paracoccus aminovorans HPD-2 and further explored the synergistic interactions that facilitate pyrene degradation in nitrogen-deprived environments. We found that A. chroococcum HN and P. aminovorans HPD-2 grew and degraded pyrene more quickly in co-culture than in monoculture. Surface-enhanced Raman spectroscopy combined with 15N stable isotope probing (SERS - 15N SIP) demonstrated that A. chroococcum HN provided nitrogen to P. aminovorans HPD-2. Metabolite analysis and feeding experiments confirmed that cross-feeding occurred between A. chroococcum HN and P. aminovorans HPD-2 during pyrene degradation. Transcriptomic and metabolomic analyses further revealed that co-culture significantly upregulated key pathways such as nitrogen fixation, aromatic compound degradation, protein export, and the TCA cycle in A. chroococcum HN and quorum sensing, aromatic compound degradation and ABC transporters in P. aminovorans HPD-2. Phenotypic and fluorescence in situ hybridization (FISH) assays demonstrated that A. chroococcum HN produced large amounts of biofilm and was located at the bottom of the biofilm in co-culture, whereas P. aminovorans HPD-2 attached to the surface layer and formed a bridge-like structure with A. chroococcum HN. This study demonstrates that distinct syntrophic interactions occur between A. chroococcum HN and P. aminovorans HPD-2 and provides support for their combined use in organic pollutant degradation in nitrogen-deprived environments.


Assuntos
Fixação de Nitrogênio , Nitrogênio , Nitrogênio/metabolismo , Hibridização in Situ Fluorescente , Pirenos
5.
Artigo em Inglês | MEDLINE | ID: mdl-37691198

RESUMO

AIMS: This study aims to evaluate the efficacy and safety of PARP inhibitor therapy in advanced ovarian cancer and identify the optimal treatment for the survival of patients. BACKGROUND: The diversity of PARP inhibitors makes clinicians confused about the optimal strategy and the most effective BRCAm mutation-based regimen for the survival of patients with advanced ovarian cancer. OBJECTIVES: The objective of this study is to compare the effects of various PARP inhibitors alone or in combination with other agents in advanced ovarian cancer. METHODS: PubMed, Embase, Cochrane Library, and Web of Science were searched for relevant studies on PARP inhibitors for ovarian cancer. Bayesian network meta-analysis was performed using Stata 15.0 and R 4.0.4. The primary outcome was the overall PFS, and the secondary outcomes included OS, AE3, DISAE, and TFST. RESULTS: Fifteen studies involving 5,788 participants were included. The Bayesian network metaanalysis results showed that olaparibANDAI was the most beneficial in prolonging overall PFS and non-BRCAm PFS, followed by niraparibANDAI. However, for BRCAm patients, olaparibTR might be the most effective, followed by niraparibANDAI. Olaparib was the most effective for the OS of BRCAm patients. AI, olaparibANDAI, and veliparibTR were more likely to induce grade 3 or higher adverse events. AI and olaparibANDAI were more likely to cause DISAE. CONCLUSION: PARP inhibitors are beneficial to the survival of patients with advanced ovarian cancer. The olaparibTR is the most effective for BRCAm patients, whereas olaparibANDAI and niraparibANDAI are preferable for non-BRCAm patients. Other: More high-quality studies are desired to investigate the efficacy and safety of PARP inhibitors in patients with other genetic performances.

6.
J Phys Condens Matter ; 35(36)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37267987

RESUMO

Effect of the internal interface layer on the dielectric properties of doped Ba0.6Sr0.4TiO3(BST) films and their simulation research in filters. Based on the interfacial effect in the multi-layer ferroelectric thin film, a different number of internal interface layers was proposed and introduced into the Ba0.6Sr0.4TiO3thin film. First, Ba0.6Sr0.4Ti0.99Zn0.01O3(ZBST) sol and Ba0.6Sr0.4Ti0.99Mg0.01O3(MBST) sols were prepared using the sol-gel method. Ba0.6Sr0.4Ti0.99Zn0.01O3/Ba0.6Sr0.4Ti0.99Mg0.01O3/Ba0.6Sr0.4Ti0.99Zn0.01O3thin films with 2 layer internal interface layer, 4 layer internal interface layer and 8 layer internal interface layer were designed and prepared (I2, I4, I8). The effects of the internal interface layer on the structure, morphology, dielectric properties, and leakage current behavior of the films were studied. The results showed that all the films were of the cubic perovskite BST phase and had the strongest diffraction peak in the (110) crystal plane. The surface composition of the film was uniform, and there was no cracked layer. When the bias of the applied DC field was 600 kV cm-1, the high-quality factor values of the I8 thin film at 10 MHz and 100 kHz were 111.3 and 108.6, respectively. The introduction of the internal interface layer changed the leakage current of the Ba0.6Sr0.4TiO3thin film, and the I8 thin film exhibited the minimum leakage current density. The I8 thin-film capacitor was used as the tunable element to design a fourth-step 'tapped' complementary bandpass filter. When the permittivity was reduced from 500 to 191, the central frequency-tunable rate of the filter was 5.7%.

7.
Front Neurosci ; 17: 1192993, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351423

RESUMO

Working memory refers to the brain's ability to store and manipulate information for a short period. It is disputably considered to rely on two mechanisms: sustained neuronal firing, and "activity-silent" working memory. To develop a highly biologically plausible neuromorphic computing system, it is anticipated to physically realize working memory that corresponds to both of these mechanisms. In this study, we propose a memristor-based neural network to realize the sustained neural firing and activity-silent working memory, which are reflected as dual functional states within memory. Memristor-based synapses and two types of artificial neurons are designed for the Winner-Takes-All learning rule. During the cognitive task, state transformation between the "focused" state and the "unfocused" state of working memory is demonstrated. This work paves the way for further emulating the complex working memory functions with distinct neural activities in our brains.

8.
Nat Plants ; 9(6): 908-925, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37142750

RESUMO

Genetic transformation is important for gene functional study and crop improvement. However, it is less effective in wheat. Here we employed a multi-omic analysis strategy to uncover the transcriptional regulatory network (TRN) responsible for wheat regeneration. RNA-seq, ATAC-seq and CUT&Tag techniques were utilized to profile the transcriptional and chromatin dynamics during early regeneration from the scutellum of immature embryos in the wheat variety Fielder. Our results demonstrate that the sequential expression of genes mediating cell fate transition during regeneration is induced by auxin, in coordination with changes in chromatin accessibility, H3K27me3 and H3K4me3 status. The built-up TRN driving wheat regeneration was found to be dominated by 446 key transcription factors (TFs). Further comparisons between wheat and Arabidopsis revealed distinct patterns of DNA binding with one finger (DOF) TFs in the two species. Experimental validations highlighted TaDOF5.6 (TraesCS6A02G274000) and TaDOF3.4 (TraesCS2B02G592600) as potential enhancers of transformation efficiency in different wheat varieties.


Assuntos
Fatores de Transcrição , Triticum , Triticum/genética , Triticum/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cromatina , Redes Reguladoras de Genes , Diferenciação Celular
9.
Sensors (Basel) ; 23(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36904605

RESUMO

Processing-in-Memory (PIM) based on Resistive Random Access Memory (RRAM) is an emerging acceleration architecture for artificial neural networks. This paper proposes an RRAM PIM accelerator architecture that does not use Analog-to-Digital Converters (ADCs) and Digital-to-Analog Converters (DACs). Additionally, no additional memory usage is required to avoid the need for a large amount of data transportation in convolution computation. Partial quantization is introduced to reduce the accuracy loss. The proposed architecture can substantially reduce the overall power consumption and accelerate computation. The simulation results show that the image recognition rate for the Convolutional Neural Network (CNN) algorithm can reach 284 frames per second at 50 MHz using this architecture. The accuracy of the partial quantization remains almost unchanged compared to the algorithm without quantization.

10.
Genome Biol ; 24(1): 7, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639687

RESUMO

BACKGROUND: Plant and animal embryogenesis have conserved and distinct features. Cell fate transitions occur during embryogenesis in both plants and animals. The epigenomic processes regulating plant embryogenesis remain largely elusive. RESULTS: Here, we elucidate chromatin and transcriptomic dynamics during embryogenesis of the most cultivated crop, hexaploid wheat. Time-series analysis reveals stage-specific and proximal-distal distinct chromatin accessibility and dynamics concordant with transcriptome changes. Following fertilization, the remodeling kinetics of H3K4me3, H3K27ac, and H3K27me3 differ from that in mammals, highlighting considerable species-specific epigenomic dynamics during zygotic genome activation. Polycomb repressive complex 2 (PRC2)-mediated H3K27me3 deposition is important for embryo establishment. Later H3K27ac, H3K27me3, and chromatin accessibility undergo dramatic remodeling to establish a permissive chromatin environment facilitating the access of transcription factors to cis-elements for fate patterning. Embryonic maturation is characterized by increasing H3K27me3 and decreasing chromatin accessibility, which likely participates in restricting totipotency while preventing extensive organogenesis. Finally, epigenomic signatures are correlated with biased expression among homeolog triads and divergent expression after polyploidization, revealing an epigenomic contributor to subgenome diversification in an allohexaploid genome. CONCLUSIONS: Collectively, we present an invaluable resource for comparative and mechanistic analysis of the epigenomic regulation of crop embryogenesis.


Assuntos
Cromatina , Histonas , Animais , Histonas/metabolismo , Triticum/genética , Triticum/metabolismo , Desenvolvimento Embrionário/genética , Complexo Repressor Polycomb 2/metabolismo , Mamíferos/genética
11.
Sci Total Environ ; 823: 153547, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35101510

RESUMO

Although the plant-growth promotion by algae have been studied comprehensively, their impacts on indigenous soil microbiome remain largely unexplored. Herein we conducted a greenhouse experiment to investigate the changes in soil properties and corresponding microbial communities (bacterial, fungal and protists) after 2-year application of algae and their dynamic variation within 60 days immediately after algae addition. In comparison with Control treatment, the impact of algae on soil properties and microbial communities was huge, especially the content of nitrate was decreased however soluble organic nitrogen (SON) was increased. The increased copies of nifH gene suggested the improved potential of nitrogen fixation in algae treated soil. By constructing multitrophic ecological network, soil microorganisms were divided into several modules, and two key-stone microbial taxa (module 1 and 2) showed strong associations with the content of nitrate and SON. With addition of algae, the abundance of most microbial taxa was decreased and increased in module 1 and module 2, respectively. Particularly, module 1 and module 2 were proved to be taxonomically and functionally comprised of different microbes. Moreover, random forest analysis and structural equation model indicated that the key-stone microbial taxa were more important factors affecting the content of nitrate and SON than algae, bacterial, fungal and protistan communities and the influence of algae on soil nitrogen cycling mostly depended on their indirect effects via module 1 and 2.


Assuntos
Nitrogênio , Solo , Fungos/genética , Nitrogênio/análise , Plantas , Solo/química , Microbiologia do Solo
12.
Plant Cell Environ ; 45(3): 969-984, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34800291

RESUMO

Rhizosphere microorganisms interact with plant roots by producing chemical signals that regulate root development. However, the distinct bioactive compounds and signal transduction pathways remain to be identified. Here, we showed that sesquiterpenes are the main volatile compounds produced by plant-beneficial Trichoderma guizhouense NJAU4742. Inhibition of sesquiterpene biosynthesis eliminated the promoting effect of this strain on root growth, indicating its involvement in plant-fungus cross-kingdom signalling. Sesquiterpene component analysis identified cedrene, a highly abundant sesquiterpene in strain NJAU4742, to stimulate plant growth and root development. Genetic analysis and auxin transport inhibition showed that the TIR1 and AFB2 auxin receptors, IAA14 auxin-responsive protein, and ARF7 and ARF19 transcription factors affected the response of lateral roots to cedrene. Moreover, the AUX1 auxin influx carrier and PIN2 efflux carrier were also found to be indispensable for cedrene-induced lateral root formation. Confocal imaging showed that cedrene affected the expression of pPIN2:PIN2:GFP and pPIN3:PIN3:GFP, which might be related to the effect of cedrene on root morphology. These results suggested that a novel sesquiterpene molecule from plant-beneficial T. guizhouense regulates plant root development through the transport and signalling of auxin.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Hypocreales , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/metabolismo , Sesquiterpenos Policíclicos , Transdução de Sinais
13.
Am J Orthod Dentofacial Orthop ; 159(5): 666-681.e2, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33653641

RESUMO

Treatment of orthodontic patients with temporomandibular disorder (TMD) is challenging for orthodontists because of the TMD signs and symptoms and unstable mandible position, which may lead to improper diagnosis and treatment design. This case report presents a 22-year-old woman with proclined maxillary incisors and TMD. First, stabilization splint therapy was implemented to eliminate temporomandibular joint pain and to obtain the stable adapted centric posture. Subsequently, orthodontic treatment was initiated on the basis of a definitive diagnosis made from the postsplint records. Temporary anchorage devices were used to intrude maxillary molars and distalize the maxillary dental arch. Favorable soft tissue, skeletal, and dental relationship were accomplished after 12 months of comprehensive orthodontic treatment. Functional occlusion was established with teeth as well as vacuum-formed retainers. Excellent posttreatment stability was maintained after a 20-month retention.


Assuntos
Contenções , Transtornos da Articulação Temporomandibular , Adulto , Cefalometria , Protocolos Clínicos , Feminino , Humanos , Mandíbula , Transtornos da Articulação Temporomandibular/diagnóstico , Transtornos da Articulação Temporomandibular/terapia , Adulto Jovem
14.
Acta Biomater ; 123: 364-378, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33453407

RESUMO

The existing approaches for healing mandibular condylar osteochondral defects, which are prevalent in temporomandibular joint disorders (TMD), are sparse and not reparative. To address this, regenerative medicine in situ has transpired as a potential therapeutic solution as it can effectively regenerate composite tissues. Herein, injectable self-crosslinking thiolated hyaluronic acid (HA-SH)/type I collagen (Col I) blend hydrogel and BCP ceramics combined with rabbit bone mesenchymal stem cells (rBMSCs)/chondrocytes were used to fabricate a new bi-layer scaffold to simulate specific structure of rabbit condylar osteochondral defects. The in vitro results demonstrated that the blend hydrogel scaffold provided suitable microenvironment for simultaneously realizing proliferation and chondrogenic specific matrix secretion of both rBMSCs and chondrocytes, while BCP ceramics facilitated rBMSCs proliferation and osteogenic differentiation. The in vivo results confirmed that compared with cell-free implant, the rBMSCs/chondrocytes-loaded bi-layer scaffold could effectively promote the regeneration of both fibrocartilage and subchondral bone, suggesting that the bi-layer scaffold presented a promising option for cell-mediated mandibular condylar cartilage regeneration.


Assuntos
Hidrogéis , Engenharia Tecidual , Animais , Cerâmica/farmacologia , Condrócitos , Hidrogéis/farmacologia , Osteogênese , Coelhos , Alicerces Teciduais
15.
Angle Orthod ; 91(3): 399-415, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33373430

RESUMO

Treatment of skeletal Class II patients with dual bite and idiopathic condylar resorption (ICR) is challenging for orthodontists because of the unstable position of the mandible as well as skeletal relapse attributed to improper seating of the mandibular condyles. This case report describes the successful treatment of an 18-year-old Mongolian man diagnosed with centric relation-maximum intercuspation discrepancy and ICR. After making a definitive diagnosis from verified centric relation using bilateral manipulation, orthodontic treatment was initiated followed by three-dimensional computer-aided design/computer-aided manufacturing prebent titanium plate-guided sagittal split ramus osteotomy and genioplasty. Postoperative 3D superimposition demonstrated that this surgical guide approach provided accurate repositioning of the condyles, which were well positioned in the fossae. Complete orthodontic and surgical treatment time was 24 months. The patient's facial appearance and occlusion improved significantly, and a stable result was obtained with a 1-year follow-up.


Assuntos
Má Oclusão Classe III de Angle , Má Oclusão Classe II de Angle , Procedimentos Cirúrgicos Ortognáticos , Adolescente , Cefalometria , Humanos , Masculino , Má Oclusão Classe II de Angle/complicações , Má Oclusão Classe II de Angle/diagnóstico por imagem , Má Oclusão Classe II de Angle/cirurgia , Mandíbula , Côndilo Mandibular/diagnóstico por imagem , Côndilo Mandibular/cirurgia , Osteotomia Sagital do Ramo Mandibular
17.
Front Chem ; 8: 265, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32391315

RESUMO

As the charge transport layer of quantum dot (QD) light-emitting diodes (QLEDs), metal oxides are expected to be more stable compared with organic materials. However, the efficiency of metal oxide-based all-inorganic QLEDs is still far behind that of organic-inorganic hybrid ones. The main reason is the strong interaction between metal oxide and QDs leading to the emission quenching of QDs. Here, we demonstrated nickel oxide (NiOx)-based all-inorganic QLEDs with a maximum current efficiency of 20.4 cd A-1 and external quantum efficiency (EQE) of 5.5%, which is among the most efficient all-inorganic QLEDs. The high efficiency is mainly attributed to the aluminum oxide (Al2O3) deposited at the NiOx/QDs interface to suppress the strong quenching effect of NiOx on the QD emission, together with the molybdenum oxide (MoOx) that reduced the leakage current and facilitated hole injection, more than 300% enhancement was achieved compared with the pristine NiOx-based QLEDs. Our study confirmed the effect of decorating the NiOx/QDs interface on the performance enhancement of the all-inorganic QLEDs.

18.
Front Chem ; 8: 266, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32373582

RESUMO

Quantum dot light-emitting diodes (QLEDs) have been considered as the most promising candidate of light sources for the new generation display and solid-state lighting applications. Especially, the performance of visible QLEDs based on II-VI quantum dots (QDs) has satisfied the requirements of the above applications. However, the optoelectronic properties of the corresponding near-infrared (NIR) QLEDs still lag far behind the visible ones. Here, we demonstrated the highly efficient NIR QLEDs based on chloride treated CdTe/CdSe type-II QDs. The maximum radiant emittance and peak external quantum efficiency (EQE) increased by 24.5 and 26.3%, up to 66 mW/cm2 and 7.2% for the corresponding devices based on the chloride treated CdTe/CdSe QDs with the PL peak located at 788 nm, respectively, compared with those of devices before chloride treatment. Remarkably, the EQE of > 5% can be sustained at the current density of 0.3-250 mA/cm2 after the chloride treatment. Compared with NIR LEDs based on transition metal complex, the efficiency roll-off has been suppressed to some extent for chloride treated CdTe/CdSe based NIR QLEDs. Based on the optimized conditions, the peak EQE of 7.4, 5.0, and 1.8% can be obtained for other devices based on chloride treated CdTe/CdSe with PL peak of 744, 852, and 910 nm, respectively. This improved performance can be mainly attributed to the chloride surface ligand that not only increases the carrier mobility and reduces the carrier accumulation, but also increases the probability of electron-hole radiative efficiency within QD layers.

20.
Am J Orthod Dentofacial Orthop ; 157(2): 269-277, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32005479

RESUMO

INTRODUCTION: A protocol was introduced to achieve accurate bracket placement in vivo, which consisted of operative procedures for precise control, and a computer-aided design and computer-aided manufacturing-guided bonding device. To evaluate the accuracy of this protocol, a 3-dimensional assessment was performed. METHODS: Ten consecutive patients were enrolled. Strictly following the protocol, from December 2017 to March 2018, brackets were placed on the teeth of each patient using the device. To evaluate the accuracy, deviations of positions and orientations for bracket placement were measured. Each patient was followed up after 3 months regarding bracket failures. RESULTS: The guided bonding device was used in all cases, and a total of 205 brackets were successfully bonded and evaluated. Except for 15.12% brackets with torque deviation over 2°, the deviations in mesiodistal, buccolingual, vertical, rotation, and angulation were below the clinical acceptable range (0.5 mm in translation or 2° in orientation) for all brackets. In the 3-month follow-up, there was no bracket failure in any patient. CONCLUSION: This protocol transferred the planned bracket position from the digital setup to patient's dentition with generally high positional accuracy.


Assuntos
Desenho Assistido por Computador , Colagem Dentária , Braquetes Ortodônticos , Humanos , Modelos Dentários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA