Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
RSC Adv ; 14(1): 390-396, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38173610

RESUMO

Ophioglossum vulgatum L. (O. vulgatum) is a species of fern used in traditional Chinese medicine, however, its application in cosmetics has not yet been studied. This study obtained O. vulgatum extract using 70% ethanol solution and evaporation. Fourier Transform Infrared Spectrometer (FTIR) analysis identified many active components in O. vulgatum extract, such as polyols, amino acids, and flavonoids. A Pickering emulsion of O. vulgatum extract was also prepared, stabilized by a type of carbon dot based on l-arginine (CDs-Arg). The prepared Pickering emulsion was characterized by metallographic microscope and contact angle measurement. The results demonstrated that it was a pH-responsive O/W emulsion. Facial cleanser was then created using the prepared Pickering emulsion as the main component. When squeezed onto hands, the cleanser produced many delicate foams and caused no skin irritation. The prepared Pickering emulsion facilitated the use of O. vulgatum in facial cleanser.

2.
Adv Mater ; 36(3): e2308240, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37967309

RESUMO

Low-bandgap (LBG, Eg  ≈1.25 eV) tin-lead (Sn-Pb) perovskite solar cells (PSCs) play critical roles in constructing efficient all-perovskite tandem solar cells (TSCs) that can surpass the efficiency limit of single-junction solar cells. However, the traditional poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hole transport layer (HTL) in LBG PSCs usually restricts device efficiency and stability. Here, a strategy of employing 2-aminoethanesulfonic acid (i.e., taurine) as the interface bridge to fabricate efficient HTL-free LBG PSCs with improved optoelectronic properties of the perovskite absorbers at the buried contacts is reported. Taurine-modified ITO substrate has lower optical losses, better energy level alignment, and higher charge transfer capability than PEDOT:PSS HTL, leading to significantly improved open-circuit voltage (VOC ) and short-circuit current density of corresponding devices. The best-performing LBG PSC with a power conversion efficiency (PCE) of 22.50% and an impressive VOC of 0.911 V is realized, enabling all-perovskite TSCs with an efficiency of 26.03%. The taurine-based HTL-free TSCs have highly increased stability, retaining more than 90% and 80% of their initial PCEs after constant operation under 1-sun illumination for 600 h and under 55 °C thermal stress for 950 h, respectively. This work provides a facile strategy for fabricating efficient and stable perovskite devices with a simplified HTL-free architecture.

3.
Small ; 20(14): e2306671, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37992245

RESUMO

Functional metamaterials can be constructed by assembling nanoparticles (NPs) into well-ordered structures, which show fascinating properties at different length scales. Using polymer-grafted NPs (PGNPs) as a building block, flexible composite metamaterials can be obtained, of which the structure is significantly affected by the property of polymer ligands. Here, it is demonstrated that the crystallization of polymer ligands determines the assembly behavior of NPs and reveal a pathway-dependent self-assembly of PGNPs into different metastructures in solution. By changing the crystallization degree of polymer ligands, the arrangement structure of NPs can be tailored. When the polymer ligands highly crystallize, the PGNPs assemble into diamond-shaped platelets, in which the NPs arrange disorderedly. When the polymer ligands lowly crystallize, the PGNPs assemble into highly ordered 3D superlattices, in which the NPs pack into a body-centered-cubic structure. The structure transformation of PGNP assemblies can be achieved by thermal annealing to regulate the crystallization of polymer ligands. Interestingly, the diamond-shaped platelets remain "living" for seeded epitaxial growth of newly added crystalline species. This work demonstrates the effects of ligand crystallization on the crystallization of NP, providing new insights into the structure regulation of metamaterials.

4.
Plant Physiol Biochem ; 206: 108315, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38157836

RESUMO

Aluminium (Al) toxicity stands out as a primary cause of crop failure in acidic soils. The root gravity setpoint angle (GSA), one of the important traits of the root system architecture (RSA), plays a pivotal role in enabling plants to adapt to abiotic stress. This study explored the correlation between GSA and Al stress using hydroponic culture with pea (Pisum sativum) plants. The findings revealed that under Al stress, GSA increased in newly developed lateral roots. Notably, this response remained consistent regardless of the treatment duration, extending for at least 3 days during the experiment. Furthermore, exposure to Al led to a reduction in both the size and quantity of starch granules, pivotal components linked to gravity perception. The accumulation of auxin in root transition zone increased. This variation was mirrored in the expression of genes linked to granule formation and auxin efflux, particularly those in the PIN-formed family. This developmental framework suggested a unique role for the root gravitropic response that hinges on starch granules and auxin transport, acting as mediators in the modulation of GSA under Al stress. Exogenous application of indole-3-acetic acid (IAA) and the auxin efflux inhibitor N-1-naphthylphthalamic acid (NPA) had an impact on the root gravitropic response to Al stress. The outcomes indicate that Al stress inhibited polar auxin transport and starch granule formation, the two processes crucial for gravitropism. This impairment led to an elevation in GSA and a reconfiguration of RSA. This study introduces a novel perspective on how plant roots react to Al toxicity, culminating in RSA modification in the context of acidic soil with elevated Al concentrations.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Gravitropismo , Proteínas de Arabidopsis/genética , Pisum sativum/genética , Arabidopsis/genética , Alumínio/toxicidade , Alumínio/metabolismo , Raízes de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Amido/metabolismo
5.
Food Chem X ; 20: 100905, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37854794

RESUMO

This study employed proline, glucose, and water to prepare natural deep eutectic solvents (NADES) through heating and stirring. The Maillard reaction was then performed, producing a high yield of Amadori rearrangement product (ARP) and physicochemical properties of NADES were examined for impacts on the reaction. Water had a dual function by promoting the formation of hydrogen bonding networks within the NADES when present at less than 15%, and also working as a diluting agent that could potentially disturb its structure when exceed 15%. These changes further affected the subsequent Maillard reaction, especially the ARP accumulation (reached the highest when water content was 15%). Correlation analysis shows strong positive viscosity-ARP and negative water activity-ARP correlations within a range. Moreover, the product (rich in ARP) remarkably enhanced umami and saltiness. This finding provides insights into modulating the Maillard reaction by adjusting NADES properties, demonstrating feasibility of this approach for flavor enhancer development.

6.
PeerJ ; 11: e15922, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37663280

RESUMO

Adenosine promotes anti-tumor immune responses by modulating the functions of T-cells and natural killer (NK) cells in the tumor microenvironment; however, the role of adenosine receptors in the progression of oral squamous cell carcinoma (OSCC) and its effects on immune checkpoint therapy remain unclear. In this study, we obtained the tumor tissues from 80 OSCC patients admitted at the Shandong University Qilu Hospital between February 2014 and December 2016. Thereafter, we detected the expression of adenosine 2b receptor (A2BR) and programmed death-ligand 1 (PD-L1) using immunohistochemical staining and analyzed the association between their expression in different regions of the tumor tissues, such as tumor nest, border, and paracancer stroma. To determine the role of A2BR in PD-L1 expression, CAL-27 (an OSCC cell line) was treated with BAY60-6583 (an A2BR agonist), and PD-L1 expression was determined using western blot and flow cytometry. Furthermore, CAL-27 was treated with a nuclear transcription factor-kappa B (NF-κ B) inhibitor, PDTC, to determine whether A2BR regulates PD-L1 expression via the NF-κ B signaling pathway. Additionally, a transwell assay was performed to verify the effect of A2BR and PD-L1 on NK cell recruitment. The results of our study demonstrated that A2BR and PD-L1 are co-expressed in OSCC. Moreover, treatment with BAY60-6583 induced PD-L1 expression in the CAL-27 cells, which was partially reduced in cells pretreated with PDTC, suggesting that A2BR agonists induce PD-L1 expression via the induction of the NF-κ B signaling pathway. Furthermore, high A2BR expression in OSCC was associated with lower infiltration of NK cells. Additionally, our results demonstrated that treatment with MRS-1706 (an A2BR inverse agonist) and/or CD274 (a PD-L1-neutralizing antibody) promoted NK cell recruitment and cytotoxicity against OSCC cells. Altogether, our findings highlight the synergistic effect of co-inhibition of A2BR and PD-L1 in the treatment of OSCC via the modulation of NK cell recruitment and cytotoxicity.


Assuntos
Antagonistas do Receptor A2 de Adenosina , Neoplasias Bucais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Antígeno B7-H1/genética , Agonismo Inverso de Drogas , Células Matadoras Naturais , Neoplasias Bucais/tratamento farmacológico , NF-kappa B , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Microambiente Tumoral , Receptores A2 de Adenosina , Antagonistas do Receptor A2 de Adenosina/farmacologia
7.
Nanomaterials (Basel) ; 13(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37686929

RESUMO

The design of earth-abundant and highly efficient bifunctional electrocatalysts for hydrogen evolution and oxygen evolution reactions (HER/OER) is crucial for hydrogen production through overall water splitting. Herein, we report a novel nanostructure consisting of vertically oriented CoP hierarchical nanosheet arrays with in situ-assembled carbon skeletons on a Ti foil electrode. The novel Zeolitic Imidazolate Framework-67 (ZIF-67) template-derived hierarchical nanosheet architecture effectively improved electrical conductivity, facilitated electrolyte transport, and increased the exposure of the active sites. The obtained bifunctional hybrid exhibited a low overpotential of 72 mV at 10 mA cm-2 and a small Tafel slope of 65 mV dec-1 for HER, and an improved overpotential of 329 mV and a Tafel slope of 107 mV dec-1 for OER. Furthermore, the assembled C@CoP||C@CoP electrolyzer showed excellent overall water splitting performance (1.63 V) at a current density of 10 mA cm-2 and superior durability. This work provides a structure engineering strategy for metal-organic framework (MOF) template-derived hybrids with outstanding electrocatalytic performance.

8.
BMC Psychiatry ; 23(1): 671, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37715146

RESUMO

BACKGROUND: Despite the close relationship between sleep-wake cycles and depression symptoms, the relationship between sleep midpoint and depression symptoms in adults remains understudied. METHODS: In this cross-sectional study, 18280 adults aged ≥ 18 years from the National Health and Nutrition Examination Survey (NHANES) 2015-2020 were analyzed. Covariates included age, sex, race/ethnicity, education level, marital status, family income, body mass index, smoking status, drinking status, physical activity, comorbid condition, sleep duration, and sleep disturbance were adjusted in multivariate regression models. RESULTS: Weighted restricted cubic spline based on the complex sampling design of NHANES showed that in participants with a sleep midpoint from 2:18 AM to 6:30 AM, the prevalence of depression symptoms increased by 0.2 times (adjusted odds ratio [OR] = 1.20, 95% confidence interval [CI]: 1.08-1.33) per 1-h increment in sleep midpoint compared to the reference point of 2:18 AM. For participants with a sleep midpoint after 6:30 AM and before 2:18 AM the next day, the relationship between sleep midpoint and depression symptoms was not significant after adjusting for all covariates (adjusted OR = 1.01, 95% CI: 0.99-1.03). CONCLUSIONS: The findings indicate a significant nonlinear association between sleep midpoint and depression symptoms in a nationally representative sample of adults.


Assuntos
Depressão , Sono , Humanos , Adulto , Estudos Transversais , Depressão/epidemiologia , Inquéritos Nutricionais , Duração do Sono
9.
Cancer Med ; 12(17): 17648-17659, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37501393

RESUMO

BACKGROUND: Cervical lymph node metastasis (CLNM) is common in patients with differentiated thyroid carcinoma (DTC); however, the efficiency to distinguish CLNM before surgery is limited. T cell exhaustion, characterized by the overexpression of immune checkpoints, plays a critical role in the immune evasion of tumors. The aim of this study is to analyze the association between serum levels of soluble immune checkpoints (sICs) and CLNM in DTC patients. METHODS: Levels of sICs in serum of 71 DTC patients and 56 healthy volunteers were analyzed by ELISA. Peripheral blood mononuclear cells and cervical lymph nodes of DTC patients were isolated and their expression of sICs were analyzed. Lymphocytes in cervical lymph nodes were analyzed for immune checkpoints expression and transcription of exhaustion-associated factors. 30 out of 71 DTC patients were followed up from 3 to 9 months after the operation, and postoperative sTIM-3 were analyzed. RESULTS: Four sICs, including LAG-3, PD-1, PD-L1, and TIM-3, were increased in DTC patients. All four sICs exhibited higher sensitivity at discriminating CLNM than cervical ultrasound. In the patient-matched comparison, higher sTIM-3 levels were observed in tumor-involved lymph nodes (TILNs) than in normal lymph nodes (nLNs). T lymphocytes in TILNs had higher TIM-3 surface expression and increased secretion of sTIM-3 than those in patient-matched nLNs. Finally, postoperative serum sTIM-3 levels were decreased in DTC patients with CLNM compared to their preoperative levels. CONCLUSION: Serum levels of sICs, especially sTIM-3, could help to predict CLNM and provide evidence for surgical decision-making in DTC.


Assuntos
Adenocarcinoma , Neoplasias da Glândula Tireoide , Humanos , Receptor Celular 2 do Vírus da Hepatite A , Metástase Linfática/patologia , Leucócitos Mononucleares/patologia , Neoplasias da Glândula Tireoide/patologia , Linfonodos/patologia , Adenocarcinoma/patologia , Estudos Retrospectivos
10.
Small ; 19(23): e2208288, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36876441

RESUMO

In this work, it is reported that large-area (centimeter-scale) arrays of non-close-packed polystyrene-tethered gold nanorod (AuNR@PS) can be prepared through a liquid-liquid interfacial assembly method. Most importantly, the orientation of AuNRs in the arrays can be controlled by changing the intensity and direction of electric field applied in the solvent annealing process. The interparticle distance of AuNR can be tuned by varying the length of polymer ligands. Moreover, the AuNR@PS with short PS ligand are favorited to form orientated arrays with the assistance of electric field, while long PS ligands make the orientation of AuNRs difficult. The orientated AuNR@PS arrays are employed as the nano-floating gate of field-effect transistor memory device. Tunable charge trapping and retention characteristics in the device can be realized by electrical pulse with visible light illumination. The memory device with orientated AuNR@PS array required less illumination time (1 s) at the same onset voltage in programming operation, compared to the control device with disordered AuNR@PS array (illumination time: 3 s). Moreover, the orientated AuNR@PS array-based memory device can maintain the stored data for more than 9000 s, and exhibits stable endurance characteristic without significant degradation in 50 programming/reading/erasing/reading cycles.

11.
Nanoscale ; 15(5): 2018-2035, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36648016

RESUMO

Ordered assemblies of inorganic nanoparticles (NPs) have shown tremendous potential for wide applications due to their unique collective properties, which differ from those of individual NPs. Various assembly methods, such as external field-directed assembly, interfacial assembly, template assembly, biomolecular recognition-mediated assembly, confined assembly, and others, have been employed to generate ordered inorganic NP assemblies with hierarchical structures. Among them, the external field-directed assembly method is particularly fascinating, as it can remotely assemble NPs into well-ordered superstructures. Moreover, external fields (e.g., electric, magnetic, and shear fields) can introduce a local and/or global field intensity gradient, resulting in an additional force on NPs to drive their rotation and/or translation. Therefore, the external field-directed assembly of NPs becomes a robust method to fabricate well-defined functional materials with the desired optical, electronic, and magnetic properties, which have various applications in catalysis, sensing, disease diagnosis, energy conversion/storage, photonics, nano-floating-gate memory, and others. In this review, the effects of an electric field, magnetic field, and shear field on the organization of inorganic NPs are highlighted. The methods for controlling the well-ordered organization of inorganic NPs at different scales and their advantages are reviewed. Finally, future challenges and perspectives in this field are discussed.

12.
Nanomaterials (Basel) ; 12(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35745403

RESUMO

Low-bandgap (Eg~1.25 eV) mixed tin-lead (Sn-Pb) perovskites are promising candidates for efficient solar cells and self-powered photodetectors; however, they suffer from huge amounts of defects due to the unintentional p-type self-doping. In this work, the synergistic effects of maltol and phenyl-C61-butyric acid methyl ester (PCBM) were achieved to improve the performance of low-bandgap perovskite solar cells (PSCs) and unbiased perovskite photodetectors (PPDs) by passivating the defects and tuning charge transfer dynamics. Maltol eliminated the Sn-related traps in perovskite films through a strong metal chelating effect, whereas PCBM elevated the built-in electric potential and thus improved voltage through the spike energy alignment. Combining both advantages of maltol and PCBM, high-quality perovskite films were obtained, enabling low-bandgap PSCs with the best efficiency of 20.62%. Moreover, the optimized PSCs were further applied as self-powered PPDs in a visible light communication system with a response time of 0.736 µs, presenting a satisfactory audio transmission capability.

13.
J Neuroinflammation ; 19(1): 171, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768823

RESUMO

BACKGROUND: After traumatic brain injury (TBI), peripheral monocytes infiltrate into the central nervous system due to disruption of the blood-brain barrier, and play an important role in neuroinflammation. However, the mechanisms regulating the movement and function of peripheral monocytes after TBI have not been fully investigated. METHODS: TBI patients who underwent surgery at our hospital were recruited. CXCR2 expression in CD14+ monocytes from peripheral blood and cerebrospinal fluid (CSF) of TBI patients around surgery was analyzed by flow cytometry and compared with that of patients who suffered TBI 2-24 months prior and underwent cranioplasty. In vitro, serum or CSF from TBI/non-TBI patients were used to treat peripheral monocytes isolated from healthy volunteers to evaluate their effect on CXCR2 expression. Transwell experiments were performed to analyze the role of CXCR2 in monocyte chemotaxis toward the CSF. The role of CXCR2 in monocyte-mediated immunogenic cell death (ICD) of nerve cells was explored in an indirect co-culture system. RESULTS: Transient CXCR2 upregulation in monocytes from the peripheral blood and CSF of TBI patients was detected soon after surgery and was associated with unfavorable outcomes. TBI serum and CSF promoted CXCR2 expression in monocytes, and dexamethasone reversed this effect. Peripheral monocytes from TBI patients showed enhanced chemotaxis toward the CSF and increased inflammatory cytokine secretion. The CXCR2 antagonist SB225002 decreased monocyte chemotaxis toward TBI CSF, and lowered pro-inflammatory cytokine secretion in monocytes treated with TBI serum. SB225002 also relieved ICD in nerve cells co-cultured with TBI serum-treated monocytes. CONCLUSIONS: CXCR2 is transiently overexpressed in the peripheral monocytes of TBI patients post-surgery, and drives peripheral monocyte chemotaxis toward CSF and monocyte-mediated ICD of nerve cells. Therefore, CXCR2 may be a target for monocyte-based therapies for TBI.


Assuntos
Lesões Encefálicas Traumáticas , Monócitos , Neurônios , Receptores de Interleucina-8B , Lesões Encefálicas Traumáticas/líquido cefalorraquidiano , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Morte Celular , Quimiotaxia/fisiologia , Citocinas/metabolismo , Humanos , Morte Celular Imunogênica , Monócitos/metabolismo , Monócitos/patologia , Neurônios/metabolismo , Neurônios/patologia , Receptores de Interleucina-8B/metabolismo
14.
ACS Appl Mater Interfaces ; 14(26): 29856-29866, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35731691

RESUMO

Perovskite solar cells (PSCs) own rapidly increasing power conversion efficiencies (PCEs), but their concentrated counterparts (i.e., PCSCs) show a much lower performance. A deeper understanding of PCSCs relies on a thorough study of the intensive energy losses of the device along with increasing the illumination intensity. Taking the low band gap Sn-Pb PCSC as an example, we realize a device-level optoelectronic simulation to thoroughly disclose the internal photovoltaic physics and mechanisms by addressing the fundamental electromagnetic and carrier-transport processes within PCSCs under various concentration conditions. We find that the primary factor limiting the performance improvement of PCSCs is the significantly increased bulk recombination under the increased light concentration, which is attributed mostly to the inferior transport/collection ability of holes determined by the hole transport layer (HTL). We perform further electrical manipulation on the perovskite layer and the HTL so that the carrier-transport capability is significantly improved. Under the optoelectronic design, we fabricate low band gap PCSCs, which exhibit particularly high PCEs of up to 22.36% at 4.17 sun.

15.
Front Med (Lausanne) ; 9: 753545, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372441

RESUMO

Objective: Syndecan-2 (SDC2) methylation has been previously reported as a sensitive biomarker for the early detection of colorectal cancer (CRC). Droplet digital PCR (ddPCR) is the latest development of PCR technology. It can accurately detect and quantify the target sequence of nucleic acid. ddPCR is widely used in research and clinical diagnosis. In the present study, we aimed to develop a ddPCR method to detect SDC2 gene methylation and evaluate the diagnostic value of SDC2 gene methylation. Methods: First, a ddPCR method was developed to measure SDC2 methylation in stool samples collected from 51 cases of normal, 23 cases of adenoma, and 86 cases of CRC. Subsequently, a meta-analysis of existing studies was conducted to judge the diagnostic value of SDC2 gene methylation in CRC. PUBMED, EMBASE, Web of Science, and Scopus databases were searched for relative studies. Meta-analysis was performed using Meta Disc 1.4 and STATA 15.0 software. Results: The ddPCR showed that the linearity, sensitivity, and specificity for the detection of SDC2 gene methylation could be down to 0.1% methylation level and 5 ng of methylated DNA input. In 109 cases of CRC, 107 cases could be detected, and the sensitivity was 98.17%. The median value of the percentage of methylated reference (PMR) in colorectal adenoma and CRC patients was significantly higher compared with the normal individuals (p < 0.001). In addition, we found that the PMR value was associated with the clinical staging of CRC. The difference of PMR in stage II and stage IIIA was statistically significant (p < 0.05). Moreover, the meta-analysis showed that 11 out of 87 studies were identified to report the feasibility of SDC2 gene methylation as a method to diagnose early CRC. The pooled sensitivity and specificity of SDC2 gene methylation test for CRC were 0.80 [95% CI (0.68-0.88)] and 0.93 [95% CI (0.91-0.94)], respectively. The pooled diagnostic odds ratio (DOR) and area under curve (AUC) were 52.46 [95% CI (30.43-90.45)] and 0.94 [95% CI (0.92, 0.96)], respectively. Conclusions: The ddPCR method was more sensitive and convenient to detect SDC2 gene methylation, and the pooled analysis showed that methylated SDC2 was a valuable biomarker for the non-invasive detection of CRC.

16.
Cancer Lett ; 529: 112-125, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-34999169

RESUMO

Though circulating monocytes are the main source of tumour-associated macrophages (TAMs), the regulatory mechanisms of their recruitment to tumours and further differentiation remain unclear. In the present study, we observed a significant decrease in CXCR2 expression in classical circulating monocytes of patients with colorectal cancer (CRC), particularly those in the late TNM stage. The percentage of CXCR2+ monocytes was negatively associated with systemic inflammatory markers and positively associated with intratumoural immunocyte infiltration. The pro-inflammatory cytokine IFN-γ, which was overexpressed in patients with CRC, down-regulated CXCR2 expression of monocytes/TAMs by promoting GRK-2 expression. In vitro, inhibition of CXCR2 signalling in monocytes led to impaired chemotaxis to the tumour cell line supernatant and lower responsiveness to lipopolysaccharide (LPS) stimulation. Finally, monocytes from patients with CRC with decreased CXCR2 expression showed distinct phenotypes and functions after differentiating into CRC cell line-educated TAMs, including expression of co-stimulatory factors and secretion profile, than those from healthy controls. GRK-2 inhibitor altered the functional characteristics of TAMs. In summary, our findings suggest that CXCR2 expression on circulating monocytes reflects CRC stages and is an important factor determining TAM composition in the tumour microenvironment.


Assuntos
Quimiotaxia de Leucócito/genética , Monócitos/metabolismo , Receptores de Interleucina-8B/genética , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Linhagem Celular Tumoral , Quimiotaxia de Leucócito/imunologia , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Feminino , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Imunofenotipagem , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Estadiamento de Neoplasias , Receptores de Interleucina-8B/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
17.
Front Oncol ; 11: 740622, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34568076

RESUMO

Patients with human papillomavirus (HPV) negative oral squamous cell carcinoma (OSCC) generally have poor clinical outcomes and worse responses to radiotherapy. It is urgent to explore the underlining mechanisms of the distinct prognoses between HPV negative and HPV positive OSCC and to develop effective therapy strategy to increase the survival rate of HPV negative OSCC patients. We conducted a retrospective cohort of 99 resected OSCC patients to evaluate the prognosis of HPV negative and HPV positive OSCC patients receiving radiation or not. We further addressed the association of CD68+ macrophage infiltration with HPV status and the effects on survival of OSCC patients. We also used the TCGA-OSCC cohort for further verification. Based on the cohort study, we applied a synthetic dsRNA polymer, polyriboinosinic-polyribocytidylic acid (poly(I:C)), on CAL-27 (HPV negative OSCC cells). We co-cultured its condition medium with THP-1 derived macrophage and examined the cytokines and macrophage migration. We found that high CD68+ macrophage infiltration associated with poor overall survival in HPV negative OSCC patients receiving radiation. In vitro, poly(I:C) could induce apoptosis and enhance the radiosensitivity, but increase macrophage recruitment. Targeting HMGB1 could inhibit IL-6 induction and macrophage recruitment. Our findings indicated that CD68+ macrophage might play an important role in the outcomes of HPV negative OSCC patients receiving radiation. Our findings also suggested that radiation combined poly(I:C) might be a potential therapy strategy to increase the radiation response and prognosis of HPV negative OSCC. Notably, HMGB1 should be targeted to inhibit macrophage recruitment and enhance overall therapy effects.

18.
Am J Dermatopathol ; 43(12): 942-944, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34291739

RESUMO

ABSTRACT: Acquired perforating dermatoses (APDs) are a group of diverse skin disorders in patients with systemic disease, most commonly chronic renal failure and diabetes mellitus. APD induced by medication has seldom been reported. Anti-PD-1 monoclonal antibody has recently been used as a broad-spectrum, effective, durable, and relatively safe antitumor therapy for various malignancies. Thus far, known side effects involving skin have included rash, pruritus, and vitiligo. Here, we present a rare case of a unilateral linear eruption with histopathologic features of APD in a 36-year-old man during treatment with Terepril monoclonal antibody. To the best of our knowledge, APD induced by the PD-1 inhibitor has not been described in the medical literature.


Assuntos
Toxidermias/patologia , Inibidores de Checkpoint Imunológico/efeitos adversos , Dermatopatias/induzido quimicamente , Dermatopatias/patologia , Adenocarcinoma/tratamento farmacológico , Adulto , Neoplasias do Colo/tratamento farmacológico , Toxidermias/etiologia , Humanos , Masculino
19.
Small ; 17(18): e2007570, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33734588

RESUMO

Halogen-bond driven assembly, a world parallel to hydrogen-bond, has emerged as an attractive tool for constructing (macro)molecular arrangement. However, knowledge about halogen-bond mediated confined-assembly in emulsion droplets is limited so far. An I…. N bond mediated confined-assembly pathway to enable order-order phase transitions is reported here. Compared to hydrogen bonds, the distinct features of halogen bonds (e.g., higher directionality, hydrophobicity, favored in polar solvents), offers opportunities to achieve novel nanostructures and materials. Polystyrene-b-poly(4-vinyl pyridine) (PS-b-P4VP) AB diblock copolymer is chosen as halogen acceptor, while an iodotetrafluorophenoxy substituted C-type homopolymer, (poly(3-(2,3,5,6-tetrafluoro-4-iodophenoxy)propyl acrylate), PTFIPA) is designed as halogen donor, synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Formation of halogen bonding donor-acceptor pairs between the PTFIPA homopolymer and the P4VP segments presented in PS-b-P4VP, increase the volume of P4VP domains, in turn inducing an order-to-order morphology transition sequence: changing from spherical → cylindrical → lamellar → inverse cylindrical, by tuning the PTFIPA content and choice of surfactant. Subsequent selective swelling/deswelling of the P4VP domains give rise to further internal morphology transitions, creating tailored mesoporous microparticles, disassembled nanodiscs, and superaggregates. It is believed that these results will stimulate further examinations of halogen bonding interactions in emulsion droplets and many areas of application.

20.
Clin Chem Lab Med ; 59(5): 883-891, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33554565

RESUMO

OBJECTIVES: Autoverification systems have greatly improved laboratory efficiency. However, the long-developed rule-based autoverfication models have limitations. The machine learning (ML) algorithm possesses unique advantages in the evaluation of large datasets. We investigated the utility of ML algorithms for developing an artificial intelligence (AI) autoverification system to support laboratory testing. The accuracy and efficiency of the algorithm model were also validated. METHODS: Testing data, including 52 testing items with demographic information, were extracted from the laboratory information system and Roche Cobas® IT 3000 from June 1, 2018 to August 30, 2019. Two rounds of modeling were conducted to train different ML algorithms and test their abilities to distinguish invalid reports. Algorithms with the top three best performances were selected to form the finalized ensemble model. Double-blind testing between experienced laboratory personnel and the AI autoverification system was conducted, and the passing rate and false-negative rate (FNR) were documented. The working efficiency and workload reduction were also analyzed. RESULTS: The final AI system showed a 89.60% passing rate and 0.95 per mille FNR, in double-blind testing. The AI system lowered the number of invalid reports by approximately 80% compared to those evaluated by a rule-based engine, and therefore enhanced the working efficiency and reduced the workload in the biochemistry laboratory. CONCLUSIONS: We confirmed the feasibility of the ML algorithm for autoverification with high accuracy and efficiency.


Assuntos
Sistemas de Informação em Laboratório Clínico , Serviços de Laboratório Clínico , Algoritmos , Inteligência Artificial , Humanos , Laboratórios , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA