Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 283, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573435

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is an immunosuppressive disease caused by the porcine reproductive and respiratory syndrome virus (PRRSV). Current vaccine prevention and treatment approaches for PRRS are not adequate, and commercial vaccines do not provide sufficient cross-immune protection. Therefore, establishing a precise, sensitive, simple, and rapid serological diagnostic approach for detecting PRRSV antibodies is crucial. The present study used quantum dot fluorescent microspheres (QDFM) as tracers, covalently linked to the PRRSV N protein, to develop an immunochromatography strip (ICS) for detecting PRRSV antibodies. Monoclonal antibodies against PRRSV nucleocapsid (N) and membrane (M) proteins were both coated on nitrocellulose membranes as control (C) and test (T) lines, respectively. QDFM ICS identified PRRSV antibodies under 10 min with high sensitivity and specificity. The specificity assay revealed no cross-reactivity with the other tested viruses. The sensitivity assay revealed that the minimum detection limit was 1.2 ng/mL when the maximum dilution was 1:2,048, comparable to the sensitivity of enzyme-linked immunosorbent assay (ELISA) kits. Moreover, compared to PRRSV ELISA antibody detection kits, the sensitivity, specificity, and accuracy of QDFM ICS after analyzing 189 clinical samples were 96.7%, 97.9%, and 97.4%, respectively. Notably, the test strips can be stored for up to 6 months at 4 °C and up to 4 months at room temperature (18-25 °C). In conclusion, QDFM ICS offers the advantages of rapid detection time, high specificity and sensitivity, and affordability, indicating its potential for on-site PRRS screening. KEY POINTS: • QDFM ICS is a novel method for on-site and in-lab detection of PRRSV antibodies • Its sensitivity, specificity, and accuracy are on par with commercial ELISA kits • QDFM ICS rapidly identifies PRRSV, aiding the swine industry address the evolving virus.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Pontos Quânticos , Animais , Suínos , Microesferas , Síndrome Respiratória e Reprodutiva Suína/diagnóstico , Corantes , Anticorpos Antivirais , Cromatografia de Afinidade
2.
Virology ; 585: 127-138, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37336054

RESUMO

The genomic characterization of emerging pathogens is critical for unraveling their origin and tracking their dissemination. Lumpy skin disease virus (LSDV) is a rapidly emerging pathogen in Asia including China. Although the first Lumpy skin disease (LSD) outbreak was reported in 2019, the origin, transmission, and evolutionary trajectory of LSDV in China have remained obscure. The viral genome of a circulating LSDV strain in China, abbreviated LSDV/FJ/CHA/2021, was sequenced using the next-generation sequencing technique. The morphology and cytoplasmic viral factory of these LSDV isolates were observed using transmission electron microscopy. Subsequently, the genomic characterization of this LSDV isolate was systematically analyzed for the first time using the bioinformatics software. The current study revealed that several mutations in the genome of LSDV isolates circulating in China were identified using single nucleotide polymorphisms (SNPs) analysis, an instrument to evaluate for continuous adaptive evaluation of a virus. Furthermore, phylogenomic analysis was used to identify the lineage using the whole genome sequences of 44 LSDV isolates. The result revealed that the isolates from China were closely similar to that of the LSDV isolates from Vietnam, which are divided into a monophyletic lineage sub-group I. The SNPs and Simplot analysis indicate no significant occurrence of the recombinant event on the genome of LSDV isolates in China. Notably, the live virus challenge experiment demonstrated that the pathogenic characterization of this LSDV isolate belongs to a virulent strain. Collectively, we gain the first insight into the evolutionary trajectory, spatiotemporal transmission, and pathogenic characterization of circulating LSDV in China. This study provides a unique reference for risk assessment, guiding diagnostics, and prevention in epizootic and non-epizootic areas.


Assuntos
Doença Nodular Cutânea , Vírus da Doença Nodular Cutânea , Animais , Bovinos , Vírus da Doença Nodular Cutânea/genética , Filogenia , Doença Nodular Cutânea/epidemiologia , Doença Nodular Cutânea/genética , Sequência de Bases , Surtos de Doenças , China/epidemiologia
3.
Anal Biochem ; 646: 114627, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35245488

RESUMO

SENECAVIRUS A: (SVA), an emerging picornavirus, has been associated with vesicular disease and neonatal mortality in swine, posing a great threat to the global swine industry. Accurate diagnosis of SVA is crucial for the effective prevention and control disease. In the present study, a simple, rapid and accurate diagnostic assay was developed combining recombinase polymerase amplification and a lateral flow dipstrip (RPA-LF) to detect SVA infection. Using recombinant plasmid pMD19-T-VP1 DNA as a template, the RPA-LF optimal reaction conditions were incubated at 35 °C for 25 min, and the result was visualized directly on the dipstrip. The specificity assay showed no cross-reactivity with other tested viruses, and the sensitivity assay revealed the minimum detection limit was 15 copies/µl. Moreover, the RPA-LF method was successfully applied with viral cDNA as template to test clinical samples, with no significant difference being observed between RPA-LF and qRT-PCR. Hence, the established RPA-LF assay could be used as a potential optional rapid, reliable, sensitive and low-cost method for field diagnosis of SVA, especially in resource-limited regions.


Assuntos
Picornaviridae , Recombinases , Animais , Técnicas de Amplificação de Ácido Nucleico/métodos , Nucleotidiltransferases , Picornaviridae/genética , Sensibilidade e Especificidade , Suínos
4.
Mitochondrial DNA A DNA Mapp Seq Anal ; 28(3): 411-415, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-26730765

RESUMO

The sequence diversities in three mitochondrial DNA (mtDNA) regions, namely portions of NADH dehydrogenase subunit 1 (pnad1), cytochrome c oxidase subunit 1 (pcox1), and NADH dehydrogenase subunit 4 (pnad4), were investigated in all Ascaris suum samples isolated from four regions in northwestern China. Those genes were amplified by PCR method and the lengths of pnad1, pcox1, and pnad4 were 419 bp, 711 bp, and 723 bp, respectively. The intraspecific sequence variations within A. suum samples were 0-2.9% for pnad1, 0-2.1% for pcox1, and 0-3.1% for pnad4. Phylogenetic analysis combined with three sequences of mtDNA fragments showed that all A. suum samples were monophyletic groups, but samples from the same geographical origin did not always cluster together. The results suggested that the three mtDNA fragments could not be used as molecular markers to identify the A. suum isolates from four regions, and have important implications for studying molecular epidemiology and population genetics of A. suum.


Assuntos
Ascaris suum/genética , Genes Mitocondriais , Variação Genética , Filogeografia , Animais , China , DNA de Helmintos , DNA Mitocondrial , Complexo IV da Cadeia de Transporte de Elétrons/genética , NADH Desidrogenase/genética , Filogenia , Análise de Sequência de DNA
5.
Infect Genet Evol ; 34: 394-401, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26190449

RESUMO

Genetic study of Cryptosporidium spp., Giardia intestinalis and Enterocytozoon bieneusi at species/assemblage/genotype/subtype level facilitates understanding their mechanical transmissions and underpins their control. A total of 191 fresh faecal samples were collected from golden takins in China and examined using multilocus sequence typing (MLST). Cryptosporidium spp. was detected in 15 faecal samples (7.9%), including Cryptosporidium parvum (2/15) and Cryptosporidium andersoni (13/15). MLST tool identified C. andersoni subtypes (A1, A4, A4, A1) and (A4, A4, A4, A1), and C. parvum gp60 gene subtype IId A19G1. The prevalence of G. intestinalis infection was 8.9% (17/191) and assemblage analysis identified 14 assemblage E and three assemblage B. Intra-variations were observed at triose phosphate isomerase (tpi), beta giardin (bg) and glutamate dehydrogenase (gdh) loci within the assemblage E, showing seven, three and three new subtypes in respective locus. Ten and one multilocus genotypes (MLGs) were present in assemblages E and B, respectively. E. bieneusi infection was positive in 14.7% (28/191) of the examined specimens, with three genotypes known (BEB6, D and I) and four novel internal transcribed spacer (ITS) genotypes (TEB1-TEB4). The present study revealed, for the first time, the presence of zoonotic C. parvum IId A19G1, G. intestinalis assemblage B and E. bieneusi genotype D and four novel genotypes in golden takins in China. These findings expand the host range of three zoonotic pathogens and have important implications for controlling cryptosporidiosis, giardiasis and microsporidiosis in humans and animals.


Assuntos
Criptosporidiose/parasitologia , Cryptosporidium/genética , Enterocytozoon/genética , Giardia lamblia/genética , Giardíase/veterinária , Microsporidiose/veterinária , Animais , Fezes/microbiologia , Fezes/parasitologia , Genes Fúngicos , Genótipo , Giardíase/parasitologia , Humanos , Microsporidiose/microbiologia , Tipagem Molecular , Tipagem de Sequências Multilocus , Filogenia , Ruminantes/microbiologia , Ruminantes/parasitologia , Zoonoses
6.
Infect Genet Evol ; 34: 32-5, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26079276

RESUMO

Enterocytozoon bieneusi is an emerging and opportunistic enteric pathogen triggering diarrhea and enteric disease in humans and animals. Despite extensive research on this pathogen, the prevalence and genotypes of E. bieneusi infection in precious wild animals of giant and red pandas have not been reported. In the present study, 82 faecal specimens were collected from 46 giant pandas (Ailuropoda melanoleuca) and 36 red pandas (Ailurus fulgens) in the northwest of China. By PCR and sequencing of the internal transcribed spacer (ITS) region of the ribosomal RNA (rRNA) gene of E. bieneusi, an overall infection rate of 10.98% (9/82) was observed in pandas, with 8.70% (4/46) for giant pandas, and 13.89% (5/36) for red pandas. Two ITS genotypes were identified: the novel genotype I-like (n=4) and genotype EbpC (n=5). Multilocus sequence typing (MLST) employing three microsatellites (MS1, MS3 and MS7) and one minisatellite (MS4) showed that nine, six, six and nine positive products were amplified and sequenced successfully at four respective loci. A phylogenetic analysis based on a neighbor-joining tree of the ITS gene sequences of E. bieneusi indicated that the genotype EbpC fell into 1d of group 1 of zoonotic potential, and the novel genotype I-like was clustered into group 2. The present study firstly indicated the presence of E. bieneusi in giant and red pandas, and these results suggested that integrated strategies should be implemented to effectively protect pandas and humans from infecting E. bieneusi in China.


Assuntos
Enterocytozoon/genética , Microsporidiose/veterinária , Ailuridae/microbiologia , Animais , China , DNA Espaçador Ribossômico , Enterocytozoon/classificação , Enterocytozoon/isolamento & purificação , Genótipo , Repetições de Microssatélites , Microsporidiose/microbiologia , Tipagem de Sequências Multilocus , Filogenia , Ursidae/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA