Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Langmuir ; 40(18): 9676-9687, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38663019

RESUMO

Prehydrolysis liquid (PHL) from dissolving pulp and biorefinery industries is rich in saccharides and lignin, being considered as a potential source of value-added materials and platform molecules. This study proposed an environmentally friendly and simple method to prepare morphologically controllable hollow lignin nanoparticles (LNPs) and levulinic acid (LA) from PHL. In the first step, after hydrothermal treatment of PHL with p-toluenesulfonic acid (p-TsOH), lignin with a uniform molecular weight was obtained to prepare LNPs. The prepared LNPs have an obvious hollow structure, with an average size of 490-660 nm, and exhibit good stability during 30 days of storage. When the as-obtained LNPs were used as a sustained-release agent for amikacin sulfate, the encapsulation efficiency reached over 70% and the release efficiency within 40 h reached 69.2% in a pH 5.5 buffer. Subsequently, the remaining PHL that contains saccharides was directly used for LA production under the catalysis of p-TsOH. At 150 °C for 1.5 h, the LA yield reached 58.4% and remained at 56% after 5 cycles of p-TsOH. It is worth noting that only p-TsOH was used as a reactive reagent throughout the entire preparation process. Overall, this study provided a novel pathway for the integrated utilization of PHL and showed the immense potential of the preparation and application of LNPs.


Assuntos
Portadores de Fármacos , Ácidos Levulínicos , Lignina , Nanopartículas , Populus , Ácidos Levulínicos/química , Lignina/química , Nanopartículas/química , Populus/química , Portadores de Fármacos/química , Madeira/química , Hidrólise , Tamanho da Partícula
2.
Planta ; 259(5): 112, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581602

RESUMO

MAIN CONCLUSION: The three, by mutagenesis produced genes OsPi21, OsXa5, and OsBADH2, generated novel lines exhibiting desired fragrance and improved resistance. Elite sterile lines are the basis for hybrid rice breeding, and rice quality and disease resistance become the focus of new sterile lines breeding. Since there are few sterile lines with fragrance and high resistance to blast and bacterial blight at the same time in hybrid rice production, we here integrated the simultaneous mutagenesis of three genes, OsPi21, OsXa5, and OsBADH2, into Zhi 5012S, an elite thermo-sensitive genic male sterile (TGMS) variety, using the CRISPR/Cas9 system, thus eventually generated novel sterile lines would exhibit desired popcorn-like fragrance and improved resistance to blast and bacterial blight but without a loss in major agricultural traits such as yield. Collectively, this study develops valuable germplasm resources for the development of two-line hybrid rice with disease resistance, which provides a way to rapid generation of novel TGMS lines with elite traits.


Assuntos
Sistemas CRISPR-Cas , Oryza , Oryza/genética , Resistência à Doença/genética , Odorantes , Temperatura , Melhoramento Vegetal
3.
Foods ; 13(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38611393

RESUMO

The interplay among gut microbiota, intestines, and liver is crucial in preventing acute alcoholic liver injury. In this study, the hepatoprotective potential of polysaccharides from Eucommia ulmoides Oliv. leaves (EULP) on acute alcoholic liver injury in Kunming male mice was investigated. The structural features suggested that the EULP appeared as a heterogeneous mixture of polysaccharides with a molecular weight of 186132 Da. A 14-day pretreatment of EULP ameliorated acute alcoholic-induced hepatic inflam mation (TNF-α, IL-6, and IL-10), oxidative stress (GSH, SOD, and T-AOC), and liver damage (ALT and AST) via enhancing intestinal barrier (Occludin, Claudin 1, and ZO-1) and modulating microbiome, which subsequently inhibiting endotoxemia and balancing the homeostasis of the gut-liver axis. EULP restored the composition of intestinal flora with an increase in the relative abundance of Lactobacillaceae and a decrease in Lachnospiraceae and Verrucomicrobiaceae. Notably, prolonged EULP pretreatment (14 days) but no single gavage of EULP achieved excellent hepatoprotection. These findings endorsed the potential of EULP as a functional food for mitigating acute alcoholic-induce d liver damage, attributed to its anti-inflammatory, antioxidant, and prebiotic properties facilitated by the microbiota-gut-liver axis.

4.
Front Microbiol ; 15: 1367725, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481789

RESUMO

Soil microorganisms and enzymes play crucial roles in soil organic carbon (SOC) sequestration by promoting soil aggregate formation and stability and by participating in SOC cycling and accumulation. However, the effects by which soil microorganisms and enzymes act as mediators driving dynamic changes in SOC during rapid urbanization remain unclear. Therefore, this study selected the built-up area of Nanchang City, China (505 km2), as the study area. Sampling surveys were conducted using 184 sample plots stratified based on the proportion of impermeable surface area to distinguish different urbanization levels. The driving factors of dynamic changes in SOC of different aggregates during the process of urbanization were analyzed using the soil microbial community and enzyme activities. The results demonstrated that with an increase in urbanization intensity, both SOC content and stock exhibited a significant decline (p < 0.05). The highest SOC stock and contribution rate were observed in the 0.25-1 mm aggregates, and they were significantly influenced by urbanization (p < 0.05). In addition, the biomass of gram-positive bacteria (G+) and actinomycetota, and the activities of N-acetylglucosaminidase and acid phosphatase (AP) were significantly higher in low-urbanization areas than in high-urbanization areas (p < 0.05). SOC of each aggregate was positively correlated with fungi, arbuscular mycorrhizal fungi, G+, gram-negative bacteria, actinomycetota, protozoa, ß-1,4-glucosidase, N-acetylglucosaminidase, AP, urease, and catalase. Compared to soil enzymes, soil microorganisms exhibited a greater role in SOC sequestration (22.7%). Additionally, a structural equation model indicated that urbanization can directly or indirectly lead to a decrease in SOC of aggregates by altering soil physicochemical properties and affecting microbial and enzyme dynamics. However, the larger vegetation characteristics index mitigate the negative impacts of urbanization on SOC. Overall, urbanization had a negative impact on soil carbon storage. In the future, it is important to consider strategies that focus on improving soil nutrients, maintaining soil structure, protecting existing urban trees, and enhancing plant diversity during the urbanization process. These measures can help increase soil microbial biomass and enzyme activity, thereby improving soil and aggregate-related SOC content. The study could contribute to enhancing carbon sequestration in urban greenspaces.

5.
Aging (Albany NY) ; 16(7): 6035-6053, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38536020

RESUMO

BACKGROUND: Gastric cancer (GC) is a leading reason for the death of cancer around the world. The immune microenvironment counts a great deal in immunotherapy of advanced tumors, in which T cells exert an indispensable function. METHODS: Single-cell RNA sequencing data were utilized to characterize the expression profile of T cells, followed by T cell-related genes (TCRGs) to construct signature and measure differences in survival time, enrichment pathways, somatic mutation status, immune status, and immunotherapy between groups. RESULTS: The complex tumor microenvironment was analyzed by scRNA-seq data of GC patients. We screened for these T cell signature expression genes and the TCRGs-based signature was successfully constructed and relied on the riskscore grouping. In gene set enrichment analysis, it was shown that pro-tumor and suppressive immune pathways were more abundant in the higher risk group. We also found different infiltration of immune cells in two groups, and that the higher risk samples had a poorer response to immunotherapy. CONCLUSION: Our study established a prognostic model, in which different groups had different prognosis, immune status, and enriched features. These results have provided additional insights into prognostic evaluation and the development of highly potent immunotherapies in GC.


Assuntos
Adenocarcinoma , Análise de Célula Única , Neoplasias Gástricas , Linfócitos T , Microambiente Tumoral , Neoplasias Gástricas/genética , Neoplasias Gástricas/imunologia , Humanos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Adenocarcinoma/genética , Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Linfócitos T/imunologia , Prognóstico , Masculino , Feminino , Regulação Neoplásica da Expressão Gênica , Imunoterapia , Pessoa de Meia-Idade , Transcriptoma , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Idoso
6.
Environ Toxicol Pharmacol ; 107: 104426, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38527597

RESUMO

Due to the massive production and use of plastic, the chronic and evolving exposure to microplastics in our daily lives is omnipresent. Nonylphenol (NP), a persistent organic pollutant, may change toxicity when it co-exists with microplastics. In this study, polystyrene microplastics (PS-MPs), either alone or with pre-absorbed NP, generated oxidative stress and inflammatory lesions to Caco-2 cells, as well as affecting proliferation via the MAPK signaling pathway and causing apoptosis. Damage to cell membrane integrity and intestinal barrier (marked by lower transepithelial electric resistance, greater bypass transport, and tight junction structural changes) leads to enhanced internalization risk of PS-MPs. Some important intestinal functions including nutrient absorption and xenobiotic protection were also harmed. It is worth noting that the exposure of PS-MPs with a diameter of 0.1 µm improved intestinal functions quickly but acted as a chemosensitizer for a long time, inhibiting cell perception of other toxic substances and making the cells more vulnerable.


Assuntos
Microplásticos , Fenóis , Poliestirenos , Humanos , Poliestirenos/toxicidade , Microplásticos/toxicidade , Plásticos/toxicidade , Células CACO-2
7.
Int J Biol Macromol ; 265(Pt 1): 130906, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493611

RESUMO

The pre-hydrolysis liquor (PHL) produced during pulp dissolution and biomass refining is mainly composed of hemicellulose and lignin, and it is a potential source for production of value-added materials and platform chemicals; however, their utilization has been a serious challenge. In this study, we proposed a green and simple strategy to simultaneously prepare size-controlled functional lignin nanoparticles (LNPs) and levulinic acid (LA) from PHL as the raw material. The as-prepared LNPs exhibited remarkable stability thanks to the presence of saccharides with abundant oxygen-containing groups and surface charges, which prevented aggregation and maintained long-term storage stability. Trace amounts of the LNPs (≤ 0.2 wt%) could stabilize various Pickering emulsions, even with oil-to-water ratios as high as 5:5 (v/v). Subsequently, the remaining PHL was directly used to produce LA without adding a catalyst; under optimal conditions (160 °C and 1 h), the yield of LA was 56.3 % based on the dry saccharide content in the raw PHL. More importantly, p-toluenesulfonic acid (p-TsOH), the only reactive reagent used during the entire preparation process, including the two preparation steps of the LNPs and LA, was reusable, and the recovery rate was >70 % after five cycles. Overall, this green and simple strategy effectively and comprehensively utilized the PHL and showed potential for producing biobased nanomaterials and platform chemicals.


Assuntos
Ácidos Levulínicos , Nanopartículas , Populus , Lignina/química , Hidrólise , Madeira/química , Carboidratos/análise
8.
Ecol Evol ; 14(1): e10836, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38239339

RESUMO

The Golden apple snail, Pomacea canaliculata, is one of the world's 100 worst invasive alien species that is best known for its damage to wetland agriculture. It also acts as an intermediate host of some zoonotic parasites such as Angiostrongylus cantonensis, posing threats to human public health and safety. Despite is being an important agricultural pest, the genetic information and population expansion history of this snail remains poorly understood in China. In this study, we analyzed the genetic variation and population genetics of P. canaliculata populations in seven regions of China based on molecular markers of three mitochondrial (mt) genes. A total of 15 haplotypes were recognized based on single mt cox1, nad1, and nad4, and eight haplotypes were identified using the concatenated genes. High haplotype diversity, moderate nucleotide diversity, low gene flow, and high rates of gene differentiation among the seven P. canaliculata populations were detected. Shanghai and Yunnan populations showed higher genetic flow and very low genetic differentiation. The results of Tajima's D, Fu's F s, and mismatch distribution showed that P. canaliculata did not experience population expansion in China. Genetic distance based on haplotypes suggested that nad1 gene was more conserved than cox1 gene within P. canaliculata. The phylogenetic analyses showed there may be two geographical lineages in the Chinese mainland. The present study may provide a new genetic marker to analyze P. canaliculata, and results support more evidence for studying the genetic distribution of P. canaliculata in China and contribute to a deeper understanding of its population genetics and evolutionary biology.

9.
BMC Med Educ ; 24(1): 103, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297299

RESUMO

OBJECTIVE: To develop a clinical learning environment scale for Chinese nursing students and test its reliability and validity. METHODS: Based on Moos social environment theory, qualitative interviews and expert consultations were used to develop a pretest version of the Chinese Nursing Students' Clinical Learning Environment Scale. With a convenience sampling method, 255 and 1582 Chinese nursing students were selected as the prediction and validation samples, respectively, from December 2022 to March 2023. Exploratory and confirmatory factor analyses were conducted to determine the construct validity. RESULTS: The scale consisted of 19 items. Exploratory factor analysis revealed three sub-scales, named goal orientation, interpersonal relation, and learning support, which explained 71.500% of the total variance. The results of the confirmatory factor analysis showed that the GFI was 0.848, the AGFI was 0.806, the RMSEA was 0.090, the RMR was 0.041, the NFI was 0.910, the IFI was 0.916, the CFI was 0.916, the PCFI was 0.798, and the PNFI was 0.793. The reliability values of the three dimensions were 0.870, 0.858, and 0.943, respectively, and the convergent validity values were 0.574, 0.603, and 0.625, respectively. CONCLUSION: The reliability and validity of the dimensions of the Chinese Nursing Students' Clinical Learning Environment Scale are acceptable, and the scale can be used as a useful tool for measuring the clinical learning environment of Chinese nursing students.


Assuntos
Estudantes de Enfermagem , Humanos , Psicometria , Reprodutibilidade dos Testes , Estudos Transversais , Inquéritos e Questionários , China
10.
Nat Commun ; 15(1): 310, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182595

RESUMO

The increase in intense tropical cyclone (TC) activity across the western North Pacific (WNP) has often been attributed to a warming ocean. However, it is essential to recognize that the tropical WNP region already boasts high temperatures, and a marginal increase in oceanic warmth due to global warming does not exert a significant impact on the potential for TCs to intensify. Here we report that the weakened vertical wind shear is the primary driver behind the escalating trend in TC intensity within the summer monsoon trough of the tropical WNP, while local ocean surface and subsurface thermodynamic factors play a minor role. Through observational diagnoses and numerical simulations, we establish that this weakening of the vertical wind shear is very likely due to the increase in temperature of the Tibetan Plateau. With further warming of the Tibetan Plateau under the Representative Concentration Pathway 4.5 scenario, the projected TCs will likely become stronger.

11.
Sci Total Environ ; 912: 169131, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38070575

RESUMO

In this paper, the effects of species diversity, tree growth, and spatial clustering on mycorrhizal carbon and nitrogen sequestration and the interaction of soil physicochemical properties in Northeast China were investigated. Based on 720 10 m ∗ 10 m plots in Harbin Experimental Forest Farm of Northeast Forestry University, we determined mycorrhizal biomarkers of easily extractable Glomalin-related soil protein (EEG) and total Glomalin-related soil protein (TG). Four plant diversity indices, seven structural metrics, and five soil properties were also measured. We found that: 1) The low tree diversity plots had 1.08-1.23 times higher TG, EEG, TG-N/TN (proportion of N in TG to TN), and TG-C/SOC (proportion of C in TG to SOC) than the high plots. 2) Tree diameter was negatively correlated with EEG and TG, but positively correlated with the EEG and TG contribution to soil TN and SOC. Soil EEG and TG were positively correlated with under-branch height and tree density. W (Uniform Angle Index, higher W indicates more clustering of tree distribution in the plot) was negatively correlated with the above four ratios and positively correlated with EEG/TG. 3) pH was the most powerful explainer for the GRSP variations (6.8 %, strongest negative association with GRSP/TN, R2 > 0.13), followed by soil electrical conductance (6.5 %, positive relation with TG, p < 0.05), AP (3.2 %). 4) Plant diversity mainly affected GRSP traits through the interaction with soils (0.07), tree growth and density directly increased TG, TG-N/TN, and TG-C/SOC, while tree spatial distribution directly reduced TG-N/TN. Our finding highlighted the important effects of tree diversity and forest structural traits on GRSP amount, carbon sequestration, and nutrient retentions, and could support glomalin-related forest soil management of temperate forests in the high-latitude northern hemisphere.


Assuntos
Micorrizas , Solo , Humanos , Solo/química , Árvores/metabolismo , Micorrizas/metabolismo , Florestas , Proteínas Fúngicas/metabolismo , Glicoproteínas/metabolismo , China , Carbono/análise
12.
Sci Total Environ ; 912: 169503, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38142988

RESUMO

Street trees play an important role in the city, but large-scale, multi-city inventory data are very limited to date, which can help to define geo-climatic and social development influences on urban forest characteristics. In this paper we speculate that at national level, geocliamtes and street development shape the different street tree characteristics, and large scale street View images (SVIs)-measurements favor the identification of factors responsible for the street tree variations in China. By collecting urban trees from 11 metropolises through SVIs method, an inventory of urban trees in China, including 201,942 trees at 9807 sites, was obtained from a latitude gradient from tropical 18oN to cold-temperate 45oN. Individual tree size-related growth status, tree-shrub-herb-related vertical structure, tree species identity, and street condition and street development (total 20 social development parameters) in the inventory is recorded. We analyzed trends and factors influencing street trees characteristics through latitudinal variation, distribution, linear regression, redundancy (RDA) ordination, and inter-city comparisons. The results showed that 1) with latitude increased, DBH and CPS linearly decreased, together with more highly dense forests (>100 trees/100 m street segment) observed. Latitude independence was in TH and forest vertical structural complexity. 2) All tree size data were in the log-normal distribution pattern when the two-parameter model was used and was best fitted by the Johnson distribution pattern when the >2-parameter model was used. 3) Tree growth status showed strong latitude dependency (R2 > 0.4, p < 0.05), with latitude increase accompanied by a higher percentage of trees with poor growth status (diebacks, dead trees, etc.). 4) The top abundant trees were Populus spp., Cinnamomum camphora, Salix spp., Platanus acerifolia, Ficus macrocarpa (5.5 %-14.6 %), and the arbor-shrub-herb three-layer structured forests took 52.3 % of total sites. With latitude rise, increasing abundance of Populus spp., Salix spp., elm, and pine but decreasing abundance of the unrecognizable tree groups were found (p < 0.05). 5) We also constructed a street tree comprehensive index based on their potential for providing services to citizen from the inventory data and found it was negatively related to latitudes. RDA ordination showed that geo-climatic conditions (49 %-61.5 %) and social developments (21.4 %-52.7 %) were almost equally responsible for tree size, growth status, and vertical structural variations, while road width (lane number of the street) was the most potent predictor (coefficient > 2.0 %, p < 0.01) for these variations. Our study can benefit the national-level management of urban forests and inventory-based various ecological service precise evaluation.


Assuntos
Populus , Árvores , Florestas , Cidades , China , Modelos Lineares
13.
Part Fibre Toxicol ; 20(1): 49, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110964

RESUMO

BACKGROUND: Nanoplastics (NPs) are omnipresent in our lives as a new type of pollution with a tiny size. It can enter organisms from the environment, accumulate in the body, and be passed down the food chain. Inflammatory bowel disease (IBD) is a nonspecific intestinal inflammatory disease that is recurrent and prevalent in the population. Given that the intestinal features of colitis may affect the behavior and toxicity of NPs, it is imperative to clarify the risk and toxicity mechanisms of NPs in colitis models. METHODS AND RESULTS: In this study, mice were subjected to three cycles of 5-day dextran sulfate sodium (DSS) exposures, with a break of 7 to 11 days between each cycle. After the first cycle of DSS exposure, the mice were fed gavagely with water containing 100 nm polystyrene nanobeads (PS-NPs, at concentrations of 1 mg/kg·BW, 5 mg/kg·BW and 25 mg/kg·BW, respectively) for 28 consecutive days. The results demonstrated that cyclic administration of DSS induced chronic inflammation in mice, while the standard drug "5-aminosalicylic acid (5-ASA)" treatment partially improved colitis manifestations. PS-NPs exacerbated intestinal inflammation in mice with chronic colitis by activating the MAPK signaling pathway. Furthermore, PS-NPs aggravated inflammation, oxidative stress, as well as hepatic lipid metabolism disturbance in the liver of mice with chronic colitis. CONCLUSION: PS-NPs exacerbate intestinal inflammation and injury in mice with chronic colitis. This finding highlights chronically ill populations' susceptibility to environmental hazards, which urgent more research and risk assessment studies.


Assuntos
Colite , Poliestirenos , Camundongos , Animais , Poliestirenos/toxicidade , Poliestirenos/metabolismo , Metabolismo dos Lipídeos , Colite/induzido quimicamente , Colite/metabolismo , Inflamação/metabolismo , Estresse Oxidativo , Fígado/metabolismo , Doença Crônica , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
14.
Clin Nutr ; 42(12): 2293-2301, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37852023

RESUMO

OBJECTIVE: Developing and validating a clinical prediction nomogram of enteral feeding intolerance (NOFI) in critically ill patients. So as to help clinicians implement pre-intervention for patients with high risk of enteral feeding intolerance (FI), formulate individualized feeding strategies, and reduce the probability of FI occurrence. METHODS: From March 2018 to April 2023, patients who met the inclusion criteria but did not meet the exclusion criteria constituted the development cohort for retrospective analysis, and NOFI was developed. Patients recruited consecutively between May 2023 and July 2023 constituted the validation cohort for the prospective analysis for independent external validation of NOFI. Initially, a backward stepwise method was employed to conduct a multivariate logistic regression analysis in the development cohort, aiming to identify the optimal-fit model. Subsequently, a nomogram was derived from this model. The validation of the nomogram was carried out in an independent external validation cohort, where discrimination and calibration were evaluated. Additionally, a decision curve analysis was conducted to assess the net benefit of utilizing the nomogram for decision-making. RESULTS: A total of 628 and 143 patients, 49.0 % and 51.7 % of patients occurred FI, were included in the development and validation cohort, respectively. We developed a NOFI in severely ill patients and the primary diagnosis, Acute gastrointestinal injury (AGI) grade, and APACHE II score were independent predictors of FI, with the OR of the primary diagnosis of circulatory disease being 2.281 (95 % CI, 1.364-3.816; P = 0.002); The OR of respiratory diseases was 0.424 (95 % CI, 0.259-0.594; P = 0.001); The OR of AGI grade was 4.920 (95 % CI, 3.773-6.416; P < 0.001), OR of APACHE II score was 1.100 (95 % CI, 1.059-1.143; P < 0.001). Independent external validation of the prediction model was performed. This model has good discrimination and calibration. The decision curve analysis of the nomogram provided better net benefit than the alternate options (full early enteral nutrition or delayed enteral nutrition). CONCLUSIONS: The prediction of enteral feeding intolerance can be conveniently facilitated by the NOFI that integrates primary diagnosis, AGI grade, and APACHE II score in critically ill patients.


Assuntos
Nutrição Enteral , Nomogramas , Humanos , Recém-Nascido , Nutrição Enteral/métodos , Estudos Retrospectivos , Estado Terminal/terapia , Estudos Prospectivos
15.
ACS Chem Biol ; 18(10): 2163-2169, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37703191

RESUMO

Myxobacteria exhibit a substantial capacity to produce bioactive natural products. The biosynthetic potential of ribosomally synthesized and post-translationally modified peptides (RiPPs) from myxobacteria remains largely underexplored. In our study, we identified a novel lanthipeptide-like biosynthetic pathway, mcy from Myxococcus sp. MCy9171, which was reconstituted in E. coli and in vitro proteolysis. Structural elucidation demonstrated that a series of dehydroamino acids were installed by an orphan McyB dehydratase onto the five McyA core peptides, named myxopeptins. Interestingly, compared with the canonical biosynthetic machinery of class I lanthipeptides, neither Cys residues existed in the diverse core regions, nor any LanC cyclase homologue was encoded in the mcy pathway. Thus, we propose myxopeptins as members of a new subclass of RiPPs, named lanthipeptide-derived linear dehydroamino acid-containing peptides (LDPs), which contain dehydrated amino acids as the class-defining post-translational modifications. Furthermore, sequence similarity network (SSN) analysis revealed the wide distribution of the biosynthetic potential of LDPs in various microbial phyla, implying a co-evolutionary scenario between the precursor peptide and class I lanthipeptide biosynthetic enzymes.


Assuntos
Myxococcus , Myxococcus/metabolismo , Escherichia coli/metabolismo , Peptídeos/química , Processamento de Proteína Pós-Traducional
16.
Brain Res ; 1820: 148568, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37689332

RESUMO

Calcium, a universal intracellular signaling molecule, plays essential roles in neural functions. Historically, in most in vitro brain slice electrophysiology studies, the extracellular calcium concentration ([Ca2+]e) in artificial cerebrospinal fluid is of a wide range and typically higher than the physiological value. At high [Ca2+]e, synaptic transmission is generally enhanced. However, the effects and the underlying mechanisms of calcium on intrinsic neuronal properties are diverse. Using whole-cell patch clamp in acute brainstem slices obtained from mice of either sex, we investigated the effects and the underlying mechanisms of high [Ca2+]e on intrinsic neuronal properties of neurons in the medial nucleus of the trapezoid body (MNTB), an auditory brainstem component in the sound localization circuitry. Compared to the physiological [Ca2+]e (1.2 mM), high [Ca2+]e at 1.8 and 2.4 mM significantly reduced the cellular excitability of MNTB neurons, resulting in decreased spike firing rate, depolarized spike threshold, and decreased the ability to follow high frequency inputs. High extracellular magnesium concentrations at 1.8 and 2.4 mM produced similar but less robust effects, due to surface charge screening. Upon high calcium application, voltage-gated sodium channel currents remained largely unchanged. Calcium-sensing receptors were detected in MNTB neurons, but blocking these receptors did not eliminate the effects of high calcium on spontaneous spiking. We attribute the lack of significant effects in these last two experiments to the moderate changes in calcium we tested. Our results call for the use of physiological [Ca2+]e in brain slice experiments.

17.
Int J Biol Macromol ; 253(Pt 1): 126593, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37659499

RESUMO

Poly(lactic acid) (PLA) has excellent properties of biodegradability and biocompatibility, which is a US Food and Drug Administration (FDA) approved biopolymer for the preparation of safe and effective vaccines, drugs, and gene delivery systems. However, there still exists a great problem whether and how the end group affects the immune response of PLA vaccines. Therefore, the aim of this study was to evaluate the in vitro and in vivo of immune response of PLA nanoparticles (NPs) with carboxyl (COOH) and ester (COOR) end groups. In vitro experiments suggested COOH NPs could promote the higher phagocytosis and activation of bone marrow dendritic cells (BMDCs) with a lower cytotoxicity. In vivo experiments showed that COOR NPs and COOH NPs could strongly elicit IgG, IgG1, and IgG2a responses both in the short and long-terms. However, the highest T cell and B cell activation, and central memory T cells response was induced by COOH NPs. In addition, the COOH NPs could significantly enhance splenocytes proliferation and cytokines secretion. Thus, the PLA with the COOH end group shows greater potential as efficient carrier materials of NPs for enhancing cellular and humoral immune responses.


Assuntos
Nanopartículas , Vacinas , Poliésteres , Imunidade Celular , Imunoglobulina G
18.
J Adv Res ; 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37399924

RESUMO

INTRODUCTION: Rice flowering is a major agronomic trait, determining yield and ecological adaptability in particular regions. ABA plays an essential role in rice flowering, but the underlying molecular mechanism remains largely elusive. OBJECTIVES: In this study, we demonstrated a "SAPK8-ABF1-Ehd1/Ehd2" pathway, through which exogenous ABA represses rice flowering in a photoperiod-independent manner. METHODS: We generated abf1 and sapk8 mutants using the CRISPR-Cas9 method. Using yeast two-hybrid, Pull down, BiFC and kinase assays, SAPK8 interacted and phosphorylated ABF1. ABF1 directly bound to the promoters of Ehd1 and Ehd2 using ChIP-qPCR, EMSA, and LUC transient transcriptional activity assay, and suppressed the transcription of these genes. RESULTS: Under both long day and short day conditions, simultaneous knock-out of ABF1 and its homolog bZIP40 accelerated flowering, while SAPK8 and ABF1 over-expression lines exhibited delayed flowering and hypersensitivity to ABA-mediated flowering repression. After perceiving the ABA signal, SAPK8 physically binds to and phosphorylates ABF1 to enhance its binding to the promoters of master positive flowering regulators Ehd1 and Ehd2. Upon interacting with FIE2, ABF1 recruited PRC2 complex to deposit H3K27me3 suppressive histone modification on Ehd1 and Ehd2 to suppress these genes transcription, thereby leading to later flowering. CONCLUSION: Our work highlighted the biological functions of SAPK8 and ABF1 in ABA signaling, flowering control and the involvement of a PRC2-mediated epigenetic repression mechanism in the transcription regulation governed by ABF1 on ABA-mediated rice flowering repression.

19.
iScience ; 26(8): 107351, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37520725

RESUMO

Evidence for recombination between mitochondrial (mt) minichromosomes has been reported in sucking lice, but it is still not clear how frequent mt minichromosomal recombination occurs. We sequenced the mt genomes of the cattle louse Linognathus vituli and the goat louse L. africanus. Both Linognathus species have 10 mt minichromosomes, and seven of them have the same gene content and gene arrangement. Comparison of mt karyotypes revealed numerous inter-minichromosomal recombination events in the evolution of Linognathus species. Minichromosome merger, gene duplication and gene translocation occurred in the lineage leading to Linognathus lice. After the divergence of L. vituli and L. africanus, duplication, degeneration, deletion and translocation of genes also occurred independently in each species. Most of the recombination events in the Linognathus species occurred upstream of either cox3 or nad2, indicating these two locations were hotspots for inter-minichromosomal recombination. Our results provide an important perspective on mt genome evolution in metazoans.

20.
Hear Res ; 435: 108822, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37285615

RESUMO

Rhythmic action potentials (AP) are generated via intrinsic ionic mechanisms in pacemaking neurons, producing synaptic responses of regular inter-event intervals (IEIs) in their targets. In auditory processing, evoked temporally patterned activities are induced when neural responses timely lock to a certain phase of the sound stimuli. Spontaneous spike activity, however, is a stochastic process, rendering the prediction of the exact timing of the next event completely based on probability. Furthermore, neuromodulation mediated by metabotropic glutamate receptors (mGluRs) is not commonly associated with patterned neural activities. Here, we report an intriguing phenomenon. In a subpopulation of medial nucleus of the trapezoid body (MNTB) neurons recorded under whole-cell voltage-clamp mode in acute mouse brain slices, temporally patterned AP-dependent glycinergic sIPSCs and glutamatergic sEPSCs were elicited by activation of group I mGluRs with 3,5-DHPG (200 µM). Auto-correlation analyses revealed rhythmogenesis in these synaptic responses. Knockout of mGluR5 largely eliminated the effects of 3,5-DHPG. Cell-attached recordings showed temporally patterned spikes evoked by 3,5-DHPG in potential presynaptic VNTB cells for synaptic inhibition onto MNTB. The amplitudes of sEPSCs enhanced by 3,5-DHPG were larger than quantal size but smaller than spike-driven calyceal inputs, suggesting that non-calyceal inputs to MNTB might be responsible for the temporally patterned sEPSCs. Finally, immunocytochemical studies identified expression and localization of mGluR5 and mGluR1 in the VNTB-MNTB inhibitory pathway. Our results imply a potential central mechanism underlying the generation of patterned spontaneous spike activity in the brainstem sound localization circuit.


Assuntos
Receptores de Glutamato Metabotrópico , Corpo Trapezoide , Camundongos , Animais , Potenciais de Ação , Corpo Trapezoide/fisiologia , Camundongos Knockout , Transmissão Sináptica/fisiologia , Neurônios/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA