Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(33): 22572-22585, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39110092

RESUMO

Two-dimension graphene oxide (GO) nanosheets with high and low serum protein binding profiles (high/low hard-bound protein corona/HChigh/low) are used in this study as model materials and screening tools to investigate the underlying roles of the protein corona on nanomaterial toxicities in vivo. We proposed that the in vivo biocompatibility/nanotoxicity of GO is protein corona-dependent and host immunity-dependent. The hypothesis was tested by injecting HChigh/low GO nanosheets in immunocompetent ICR/CD1 and immunodeficient NOD-scid II2rγnull mice and performed histopathological and hematological evaluation studies on days 1 and 14 post-injection. HClow GO induced more severe acute lung injury compared to HChigh GO in both immunocompetent and immunodeficient mice, with the effect being particularly pronounced in immunocompetent animals. Additionally, HClow GO caused more significant liver injury in both types of mice, with immunodeficient mice being more susceptible to its hepatotoxic effects. Moreover, administration of HClow GO resulted in increased hematological toxicity and elevated levels of serum pro-inflammatory cytokines in immunocompromised and immunocompetent mice, respectively. Correlation studies were conducted to explore the impact of distinct protein corona compositions on resulting toxicities in both immunocompetent and immunodeficient mice. This facilitated the identification of consistent patterns, aligning with those observed in vitro, thus indicating a robust in vitro-in vivo correlation. This research will advance our comprehension of how hard corona proteins interact with immune cells, leading to toxicity, and will facilitate the development of improved immune-modulating nanomaterials for therapeutic purposes.


Assuntos
Grafite , Camundongos Endogâmicos ICR , Nanoestruturas , Coroa de Proteína , Animais , Grafite/química , Grafite/toxicidade , Camundongos , Coroa de Proteína/química , Coroa de Proteína/imunologia , Nanoestruturas/química , Nanoestruturas/toxicidade , Camundongos SCID , Camundongos Endogâmicos NOD
2.
J Control Release ; 369: 251-265, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493950

RESUMO

Immunotherapy is currently a standard of care in the treatment of many malignancies. However, predictable side effects caused by systemic administration of highly immunostimulatory molecules have been a serious concern within this field. Intratumoural expression or silencing of immunogenic and immunoinhibitory molecules using nucleic acid-based approaches such as plasmid DNA (pDNA) and small interfering RNA (siRNA), respectively, could represent a next generation of cancer immunotherapy. Here, we employed lipid nanoparticles (LNPs) to deliver either non-specific pDNA and siRNA, or constructs targeting two prominent immunotherapeutic targets OX40L and indoleamine 2,3-dioxygenase-1 (IDO), to tumours in vivo. In the B16F10 mouse model, intratumoural delivery of LNP-formulated non-specific pDNA and siRNA led to strong local immune activation and tumour growth inhibition even at low doses due to the pDNA immunogenic nature. Replacement of these non-specific constructs by pOX40L and siIDO resulted in more prominent immune activation as evidenced by increased immune cell infiltration in tumours and tumour-draining lymph nodes. Consistently, pOX40L alone or in combination with siIDO could prolong overall survival, resulting in complete tumour regression and the formation of immunological memory in tumour rechallenge models. Our results suggest that intratumoural administration of LNP-formulated pDNA and siRNA offers a promising approach for cancer immunotherapy.


Assuntos
DNA , Imunoterapia , Camundongos Endogâmicos C57BL , Nanopartículas , Plasmídeos , RNA Interferente Pequeno , Animais , Imunoterapia/métodos , RNA Interferente Pequeno/administração & dosagem , Nanopartículas/administração & dosagem , Nanopartículas/química , Plasmídeos/administração & dosagem , DNA/administração & dosagem , DNA/imunologia , Camundongos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Feminino , Linhagem Celular Tumoral , Melanoma Experimental/terapia , Melanoma Experimental/imunologia , Lipídeos/química , Lipídeos/administração & dosagem , Portadores de Fármacos/química
3.
Nat Nanotechnol ; 19(6): 846-855, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38366223

RESUMO

Extracellular vesicles (EVs) derived from mesenchymal stem cells are promising nanotherapeutics in liver diseases due to their regenerative and immunomodulatory properties. Nevertheless, a concern has been raised regarding the rapid clearance of exogenous EVs by phagocytic cells. Here we explore the impact of protein corona on EVs derived from two culturing conditions in which specific proteins acquired from media were simultaneously adsorbed on the EV surface. Additionally, by incubating EVs with serum, simulating protein corona formation upon systemic delivery, further resolved protein corona-EV complex patterns were investigated. Our findings reveal the potential influences of corona composition on EVs under in vitro conditions and their in vivo kinetics. Our data suggest that bound albumin creates an EV signature that can retarget EVs from hepatic macrophages. This results in markedly improved cellular uptake by hepatocytes, liver sinusoidal endothelial cells and hepatic stellate cells. This phenomenon can be applied as a camouflage strategy by precoating EVs with albumin to fabricate the albumin-enriched protein corona-EV complex, enhancing non-phagocytic uptake in the liver. This work addresses a critical challenge facing intravenously administered EVs for liver therapy by tailoring the protein corona-EV complex for liver cell targeting and immune evasion.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Coroa de Proteína , Vesículas Extracelulares/metabolismo , Coroa de Proteína/metabolismo , Coroa de Proteína/química , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Animais , Humanos , Camundongos , Hepatócitos/metabolismo , Hepatócitos/citologia , Fígado/metabolismo , Macrófagos/metabolismo , Macrófagos/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA