Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuropsychopharmacology ; 48(9): 1318-1327, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37041207

RESUMO

After drug withdrawal, a key factor triggering relapse is progressively intensified cue-associated drug craving, termed incubation of drug craving. After withdrawal from cocaine self-administration, incubation of cocaine craving develops more reliably in rats compared to mice. This species difference provides an opportunity to determine rat-specific cellular adaptations, which may constitute the critical mechanisms that contribute to incubated cocaine craving in humans. Expression of incubated cocaine seeking is mediated, in part, by cocaine-induced cellular adaptations in medium spiny neurons (MSNs) within the nucleus accumbens (NAc). In rats, decreased membrane excitability in NAc MSNs is a prominent cellular adaptation, which is induced after cocaine self-administration and lasts throughout prolonged drug withdrawal. Here, we show that, similar to rats, mice exhibit decreased membrane excitability of dopamine D1 receptor (D1)-, but not D2 (D2)-, expressing MSNs within the NAc shell (NAcSh) after 1 d withdrawal from cocaine self-administration. However, in contrast to rats, this membrane adaptation does not persist in mice, diminishing after 45-d withdrawal. We also find that restoring the membrane excitability of NAcSh MSNs after cocaine withdrawal decreases cocaine seeking in rats. This suggests that drug-induced membrane adaptations are essential for behavioral expression of incubated cocaine craving. In mice, however, experimentally inducing hypoactivity of D1 NAcSh MSNs after cocaine withdrawal does not alter cocaine seeking, suggesting that MSN hypo-excitability alone is insufficient to increase cocaine seeking. Together, our results demonstrate an overall permissive role of cocaine-induced hypoactivity of NAcSh MSNs in gating increased cocaine seeking after prolonged cocaine withdrawal.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Síndrome de Abstinência a Substâncias , Humanos , Ratos , Camundongos , Animais , Fissura , Núcleo Accumbens/metabolismo , Neurônios/metabolismo , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Receptores Dopaminérgicos/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo
2.
BMC Infect Dis ; 22(1): 929, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36503381

RESUMO

BACKGROUNDS: Interleukin-6 (IL-6) blockers including tocilizumab and sarilumab were approved by the U.S. Food and Drug Administration (FDA) in June 2021 for the treatment of patients with moderate to severe COVID-19. The use of sarilumab or tocilizumab in COVID-19 patients has been related to a reduction in mortality compared to standard care. Recent evidence has emerged concerning drug-induced liver injury (DILI) after sarilumab or tocilizumab applications in COVID-19 patients. AIMS: The study aimed to estimate DILI associated with sarilumab or tocilizumab in treating moderate to severe patients infected with SARS-Cov-2. METHODS: We conducted a retrospective pharmacovigilance study by data mining of the FDA's adverse event reporting systems (FAERS) database from the first quarter of 2004 to the fourth quarter of 2021 in confirmed COVID-19 patients. We analyzed DILI cases associated with tocilizumab or sarilumab in treating COVID-19 patients from the FAERS during this period. Disproportionality analysis and Bayesian analysis of COVID-19 patients were utilized for case analysis, and we also next compared the onset time and fatality rates of DILI following tocilizumab or sarilumab. RESULTS: A total of 275 cases of TCZ or SAR-related DILI reports were extracted. A total of 192 AEs cases were related to tocilizumab (TCZ), and 83 were related to sarilumab (SAR). In patients treated with TCZ, most were < 75 years old (51.57%), with more male than female (46.35% vs. 13.02%). The correlation between IL-6 receptor antagonists and DILI was stronger in SAR (ROR = 12.94; 95%CI 9.6-17.44) than in TCZ (ROR = 1.33; 95%CI 1.14-1.55). The onset time of DILI was different between TCZ and SAR, and a significant difference was observed in TCZ than SAR (P < 0.0001). A significant difference was observed in the mortality rate of TCZ and SAR (P = 0.0009). DILI associated with COVID-19 patients treated with TCZ appeared to have earlier onset-time (1(0-46) day) VS. SAR (3.5(0-27) day). CONCLUSION: This study shows strict monitor ought to be paid for TCZ or SAR when used for COVID-19 patients with poor liver function.


Assuntos
COVID-19 , Doença Hepática Induzida por Substâncias e Drogas , Humanos , Masculino , Feminino , Idoso , SARS-CoV-2 , Estudos Retrospectivos , Teorema de Bayes , Doença Hepática Induzida por Substâncias e Drogas/epidemiologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia
3.
Bioinspir Biomim ; 17(6)2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36206750

RESUMO

In fish, the tail is a key element of propulsive anatomy that contributes to thrust during swimming. Fish possess the ability to alter tail stiffness, surface area and conformation. Specifically, the region at the base of the tail, the caudal peduncle, is proposed to be a key location of fish stiffness modulation during locomotion. Most previous analyses have focused on the overall body or tail stiffness, and not on the effects of changing stiffness specifically at the base of the tail in fish and robotic models. We used both computational fluid dynamics analysis and experimental measurements of propulsive forces in physical models with different peduncle stiffnesses to analyze the effect of altering stiffness on the tail angle of attack and propulsive force and efficiency. By changing the motion program input to the tail, we were able to alter the phase relationship between the front and back tail sections between 0° and 330°. Computational simulations showed that power consumption was nearly minimized and thrust production was nearly maximized at the kinematic pattern whereφ= 270°, the approximate phase lag observed in the experimental foils and in free swimming tuna. We observed reduced thrust and efficiency at high angles of attack, suggesting that the tail driven during these motion programs experiences stalling and loss of lift. However, there is no single peduncle stiffness that consistently maximizes performance, particularly in physical models. This result highlights the fact that the optimal caudal peduncle stiffness is highly context dependent. Therefore, incorporating the ability to control peduncle stiffness in future robotic models of fish propulsion promises to increase the ability of robots to approach the performance of fish.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Animais , Natação , Peixes/anatomia & histologia , Hidrodinâmica , Fenômenos Biomecânicos
4.
Mol Psychiatry ; 27(1): 652-668, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33837268

RESUMO

Drug addiction remains a key biomedical challenge facing current neuroscience research. In addition to neural mechanisms, the focus of the vast majority of studies to date, astrocytes have been increasingly recognized as an "accomplice." According to the tripartite synapse model, astrocytes critically regulate nearby pre- and postsynaptic neuronal substrates to craft experience-dependent synaptic plasticity, including synapse formation and elimination. Astrocytes within brain regions that are implicated in drug addiction exhibit dynamic changes in activity upon exposure to cocaine and subsequently undergo adaptive changes themselves during chronic drug exposure. Recent results have identified several key astrocytic signaling pathways that are involved in cocaine-induced synaptic and circuit adaptations. In this review, we provide a brief overview of the role of astrocytes in regulating synaptic transmission and neuronal function, and discuss how cocaine influences these astrocyte-mediated mechanisms to induce persistent synaptic and circuit alterations that promote cocaine seeking and relapse. We also consider the therapeutic potential of targeting astrocytic substrates to ameliorate drug-induced neuroplasticity for behavioral benefits. While primarily focusing on cocaine-induced astrocytic responses, we also include brief discussion of other drugs of abuse where data are available.


Assuntos
Astrócitos , Transtornos Relacionados ao Uso de Cocaína , Astrócitos/metabolismo , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Humanos , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
6.
Bioengineered ; 12(1): 6354-6363, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34511035

RESUMO

This study aimed to analyze the effect of lactobacillus johnsonii BS15 (isolation of homemade yogurt from Ahu Hongyuan Grassland) combined with abdominal massage on intestinal permeability in rats with nonalcoholic fatty liver disease (NAFLD) and cell biofilm repair. Forty-five rats were divided randomly into five groups, four of which were fed with high-fat diet to establish NAFLD models. According to the treatment methods, they were grouped into group A (lactic acid bacteria feeding), group B (abdominal massage), group A + B (a combination of the two methods), model group (distilled water feeding), and normal group (distilled water feeding). Then, the pathological indexes of liver and intestinal permeability were observed. FITC-Dextran content of the model group elevated markedly compared with normal group (P < 0.01), indicating that the intestinal permeability of NAFLD rats fed with high-fat diet increased. The intestinal permeability of groups A, B, and A + B was lower sharply than that of model group (P < 0.01), and the effect of group A + B was the most obvious. HE staining of liver tissues showed that combined treatment could improve structural changes in liver cells caused by modeling and restore the normal structure of intestinal cells. Lactobacillus combined with abdominal massage was better than two treatments alone, further promoting the permeability of intestinal mucosa in NAFLD rats and repair biofilm of hepatocytes. The results initially verified the intervention effect of abdominal massage on intestinal mucosal permeability, and further revealed the mechanism of abdominal massage in treatment of NAFLD by improving intestinal mucosal barrier permeability.


Assuntos
Absorção Gastrointestinal/fisiologia , Lactobacillus johnsonii , Massagem , Hepatopatia Gordurosa não Alcoólica , Animais , Biofilmes , Dieta Hiperlipídica , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Fígado/patologia , Masculino , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Ratos , Ratos Sprague-Dawley
7.
Pain ; 162(5): 1322-1333, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33230002

RESUMO

ABSTRACT: Pain experience can change the central processing of nociceptive inputs, resulting in persistent allodynia and hyperalgesia. However, the underlying circuit mechanisms remain underexplored. Here, we focus on pain-induced remodeling of the projection from the mediodorsal thalamus (MD) to the anterior cingulate cortex (ACC), a projection that relays spinal nociceptive input for central processing. Using optogenetics combined with slice electrophysiology, we detected in male mice that 7 days of chronic constriction injury (CCI; achieved by loose ligation of the sciatic nerve) generated AMPA receptor (AMPAR)-silent glutamatergic synapses within the contralateral MD-to-ACC projection. AMPAR-silent synapses are typically GluN2B-enriched nascent glutamatergic synapses that mediate the initial formation of neural circuits during early development. During development, some silent synapses mature and become "unsilenced" by recruiting and stabilizing AMPARs, consolidating and strengthening the newly formed circuits. Consistent with these synaptogenic features, pain-induced generation of silent synapses was accompanied by increased densities of immature dendritic spines in ACC neurons and increased synaptic weight of GluN2B-containing NMDA receptors (NMDARs) in the MD-to-ACC projection. After prolonged (∼30 days) CCI, injury-generated silent synapses declined to low levels, which likely resulted from a synaptic maturation process that strengthens AMPAR-mediated MD-to-ACC transmission. Consistent with this hypothesis, viral-mediated knockdown of GluN2B in ACC neurons, which prevented pain-induced generation of silent synapses and silent synapse-mediated strengthening of MD-to-ACC projection after prolonged CCI, prevented the development of allodynia. Taken together, our results depict a silent synapse-mediated mechanism through which key supraspinal neural circuits that regulate pain sensitivity are remodeled to induce allodynia and hyperalgesia.


Assuntos
Giro do Cíngulo , Neuralgia , Animais , Giro do Cíngulo/metabolismo , Masculino , Camundongos , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Tálamo
8.
Biol Psychiatry ; 89(4): 386-397, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33069367

RESUMO

BACKGROUND: Synaptogenesis is essential in forming new neurocircuits during development, and this is mediated in part by astrocyte-released thrombospondins (TSPs) and activation of their neuronal receptor, α2δ-1. Here, we show that this developmental synaptogenic mechanism is utilized during cocaine experience to induce spinogenesis and the generation of AMPA receptor-silent glutamatergic synapses in the adult nucleus accumbens shell (NAcSh). METHODS: Using multidisciplinary approaches including astrocyte Ca2+ imaging, genetic mouse lines, viral-mediated gene transfer, and operant behavioral procedures, we monitor the response of NAcSh astrocytes to cocaine administration and examine the role of astrocytic TSP-α2δ-1 signaling in cocaine-induced silent synapse generation as well as the behavioral impact of astrocyte-mediated synaptogenesis and silent synapse generation. RESULTS: Cocaine administration acutely increases Ca2+ events in NAcSh astrocytes, while decreasing astrocytic Ca2+ blocks cocaine-induced generation of silent synapses. Furthermore, knockout of TSP2, or pharmacological inhibition or viral-mediated knockdown of α2δ-1, prevents cocaine-induced generation of silent synapses. Moreover, disrupting TSP2-α2δ-1-mediated spinogenesis and synapse generation in NAcSh decreases cue-induced cocaine seeking after withdrawal from cocaine self-administration and cue-induced reinstatement of cocaine seeking after drug extinction. CONCLUSIONS: These results establish that silent synapses are generated by an astrocyte-mediated synaptogenic mechanism in response to cocaine experience and embed critical cue-associated memory traces that promote cocaine relapse.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Animais , Astrócitos , Cocaína/farmacologia , Camundongos , Núcleo Accumbens , Ratos , Ratos Sprague-Dawley , Autoadministração , Sinapses
9.
Bioinspir Biomim ; 16(1)2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33075763

RESUMO

To understand the governing mechanisms of bio-inspired swimming has always been challenging due to intense interactions between flexible bodies of natural aquatic species and water around them. Advanced modal decomposition techniques provide us with tools to develop more in-depth understating about these complex dynamical systems. In this paper, we employ proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) techniques to extract energetically strongest spatio-temporal orthonormal components of complex kinematics of a Crevalle jack (Caranx hippos) fish. Then, we present a computational framework for handling fluid-structure interaction related problems in order to investigate their contributions towards the overall dynamics of highly nonlinear systems. We find that the undulating motion of this fish can be described by only two standing-wave like spatially orthonormal modes. Constructing the data set from our numerical simulations for flows over the membranous caudal fin of the jack fish, our modal analyses reveal that only the first few modes receive energy from both the fluid and structure, but the contribution of the structure in the remaining modes is minimal. For the viscous and transitional flow conditions considered here, both spatially and temporally orthonormal modes show strikingly similar coherent flow structures. Our investigations are expected to assist in developing data-driven reduced-order mathematical models to examine the dynamics of bio-inspired swimming robots and develop new and effective control strategies to bring their performance closer to real fish species.


Assuntos
Perciformes , Natação , Animais , Fenômenos Biomecânicos , Peixes , Movimento (Física)
10.
Int J Numer Method Biomed Eng ; 36(12): e3406, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33070467

RESUMO

Uvula-induced snoring and associated obstructive sleep apnea is a complex phenomenon characterized by vibrating structures and highly transient vortex dynamics. This study aimed to extract signature features of uvula wake flows of different pathological origins and develop a linear reduced-order surrogate model for flow control. Six airway models were developed with two uvula kinematics and three pharynx constriction levels. A direct numerical simulation (DNS) flow solver based on the immersed boundary method was utilized to resolve the wake flows induced by the flapping uvula. Key spatial and temporal responses of the flow to uvula kinematics and pharynx constriction were investigated using continuous wavelet transform (CWT), proper orthogonal decomposition (POD), and dynamic mode decomposition (DMD). Results showed highly complex patterns in flow topologies. CWT analysis revealed multiscale correlations in both time and space between the flapping uvular and wake flows. POD analysis successfully separated the flows among the six models by projecting the datasets in the vector space spanned by the first three eigenmodes. Perceivable differences were also captured in the time evolution of the DMD modes among the six models. A linear reduced-order surrogate model was constructed from the predominant eigenmodes obtained from the DMD analysis and predicted vortex patterns from this surrogate model agreed well with the corresponding DNS simulations. The computational and analytical platform presented in this study could bring a variety of applications in breathing-related disorders and beyond. The computational efficiency of surrogate modeling makes it well suited for flow control, forecasting, and uncertainty analyses.


Assuntos
Apneia Obstrutiva do Sono , Úvula , Fenômenos Biomecânicos , Simulação por Computador , Humanos , Ronco
11.
J R Soc Interface ; 17(165): 20190590, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32264740

RESUMO

Finlets are a series of small non-retractable fins common to scombrid fishes (mackerels, bonitos and tunas), which are known for their high swimming speed. It is hypothesized that these small fins could potentially affect propulsive performance. Here, we combine experimental and computational approaches to investigate the hydrodynamics of finlets in yellowfin tuna (Thunnus albacares) during steady swimming. High-speed videos were obtained to provide kinematic data on the in vivo motion of finlets. High-fidelity simulations were then carried out to examine the hydrodynamic performance and vortex dynamics of a biologically realistic multiple-finlet model with reconstructed kinematics. It was found that finlets undergo both heaving and pitching motion and are delayed in phase from anterior to posterior along the body. Simulation results show that finlets were drag producing and did not produce thrust. The interactions among finlets helped reduce total finlet drag by 21.5%. Pitching motions of finlets helped reduce the power consumed by finlets during swimming by 20.8% compared with non-pitching finlets. Moreover, the pitching finlets created constructive forces to facilitate posterior body flapping. Wake dynamics analysis revealed a unique vortex tube matrix structure and cross-flow streams redirected by the pitching finlets, which supports their hydrodynamic function in scombrid fishes. Limitations on modelling and the generality of results are also discussed.


Assuntos
Hidrodinâmica , Atum , Nadadeiras de Animais , Animais , Fenômenos Biomecânicos , Locomoção , Natação
12.
Neuron ; 106(6): 912-926.e5, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32304628

RESUMO

Depression is a common disorder that affects women at twice the rate of men. Here, we report that long non-coding RNAs (lncRNAs), a recently discovered class of regulatory transcripts, represent about one-third of the differentially expressed genes in the brains of depressed humans and display complex region- and sex-specific patterns of regulation. We identified the primate-specific, neuronal-enriched gene LINC00473 as downregulated in prefrontal cortex (PFC) of depressed females but not males. Using viral-mediated gene transfer to express LINC00473 in adult mouse PFC neurons, we mirrored the human sex-specific phenotype by inducing stress resilience solely in female mice. This sex-specific phenotype was accompanied by changes in synaptic function and gene expression selectively in female mice and, along with studies of human neuron-like cells in culture, implicates LINC00473 as a CREB effector. Together, our studies identify LINC00473 as a female-specific driver of stress resilience that is aberrant in female depression.


Assuntos
Transtorno Depressivo Maior/genética , Córtex Pré-Frontal/metabolismo , RNA Longo não Codificante/genética , Resiliência Psicológica , Estresse Psicológico/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Comportamento Animal , Depressão/genética , Depressão/metabolismo , Transtorno Depressivo Maior/metabolismo , Regulação para Baixo , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Neurônios/metabolismo , RNA Longo não Codificante/metabolismo , RNA-Seq , Fatores Sexuais , Estresse Psicológico/metabolismo , Adulto Jovem
13.
Sci Rep ; 9(1): 18451, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31804595

RESUMO

The ventral tegmental area (VTA) projection to the nucleus accumbens shell (NAcSh) regulates NAcSh-mediated motivated behaviors in part by modulating the glutamatergic inputs. This modulation is likely to be mediated by multiple substances released from VTA axons, whose phenotypic diversity is illustrated here by ultrastructural examination. Furthermore, we show in mouse brain slices that a brief optogenetic stimulation of VTA-to-NAc projection induced a transient inhibition of excitatory postsynaptic currents (EPSCs) in NAcSh principal medium spiny neurons (MSNs). This inhibition was not accompanied by detectable alterations in presynaptic release properties of electrically-evoked EPSCs, suggesting a postsynaptic mechanism. The VTA projection to the NAcSh releases dopamine, GABA and glutamate, and induces the release of other neuronal substrates that are capable of regulating synaptic transmission. However, pharmacological inhibition of dopamine D1 or D2 receptors, GABAA or GABAB receptors, NMDA receptors, P2Y1 ATP receptors, metabotropic glutamate receptor 5, and TRP channels did not prevent this short-term inhibition. These results suggest that an unknown mechanism mediates this form of short-term plasticity induced by the VTA-to-NAc projection.


Assuntos
Axônios/metabolismo , Ácido Glutâmico/metabolismo , Núcleo Accumbens/fisiologia , Área Tegmentar Ventral/fisiologia , Animais , Axônios/efeitos dos fármacos , Axônios/ultraestrutura , Antagonistas de Dopamina/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Antagonistas GABAérgicos/farmacologia , Masculino , Camundongos , Microscopia Eletrônica , Vias Neurais/citologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Vias Neurais/ultraestrutura , Optogenética , Antagonistas da Serotonina/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/ultraestrutura
14.
J Biomech ; 94: 88-98, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31378341

RESUMO

Studying the airflows and the resultant aerodynamic pressure/force in the pharyngeal airway is critical for understanding the pathophysiology of snoring and sleep apnea. In this work, an experiment-driven computational study was conducted to examine the aerodynamics in human pharyngeal airway. An anatomically accurate pharynx model associated with different uvula kinematics was reconstructed from human magnetic resonance image (MRI) and high-speed photography. An immersed-boundary-method (IBM)-based direct numerical simulation (DNS) flow solver was adopted to simulate the corresponding unsteady flows in all their complexity. Analyses were performed on vortex dynamics and pressure fluctuations in the pharyngeal airway and force oscillations on the pharyngeal wall under the influence of varying airway obstructions, uvula flapping mode, and uvula flapping frequencies. It was found the vortex formation, aerodynamic pressure, and pharyngeal wall force were significantly affected by the width of the pharyngeal airway. By contrast, the influences from the uvula flapping mode were insignificant when other parameters were similar. Fast Fourier transformation (FFT) and continuous wavelet transform (CWT) analysis of the pressure time history revealed the existence of higher order harmonics of base frequency with significant pressure amplitudes and energy intensities. It was also found the airway pressure and pharyngeal wall force oscillate more dramatically at higher uvula flapping frequencies, which tends to promote the collapse of pharyngeal wall and initiates sleep apnea.


Assuntos
Faringe/fisiologia , Síndromes da Apneia do Sono/fisiopatologia , Úvula/fisiologia , Adulto , Obstrução das Vias Respiratórias/fisiopatologia , Fenômenos Biomecânicos , Humanos , Masculino , Modelos Anatômicos , Ronco/fisiopatologia
15.
Bioinspir Biomim ; 14(4): 046010, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31096194

RESUMO

A lift enhancement mechanism due to wing-body interaction (WBI) was previously proved to be significant in the forward flight of insect flyers with wide-shape bodies, such as cicada. In order to further explore WBI and its lift enhancement effect in a flapping flight platform with different wing and body shapes, numerical investigations of WBI were performed on the forward flight of a hummingbird in this paper. A high-fidelity computational model of a hummingbird in forward flight was modeled with its geometric complexity. The wing kinematics of flapping flight were prescribed using experimental data from previous literature. An immersed-boundary-method-based incompressible Navier‒Stokes solver was used for the 3D flow simulations of the wing-body system. Analyses on aerodynamic performances and vortex dynamics of three models, including the wing-body (WB), wing-only (WO), and body-only (BO) models, were made to examine the effect of WBI. Results have shown significant overall lift enhancement (OLE) due to WBI. The total lift force of the WB model increased by 29% compared with its WO/BO counterparts. Vortex dynamics results showed formations of unique body vortex pairs on the dorsal thorax of hummingbird where low-pressure zones were created to generate more body lift. Significant interactions between body vortex and leading-edge vortex (LEV) were observed, resulting in strengthened LEVs near the wing root and enhanced wing lift generation during downstroke. Parametric studies showed strong OLEs over wide ranges of body angle and advance ratio, respectively. The contribution of OLE from the hummingbird body increased with increasing body angle, and the wing pair's contribution increased as advance ratio increased. Results from this paper supported that lift enhancement due to WBI is potentially a general mechanism adopted by different kinds of flapping-wing flyers, and demonstrated the potential of WBI in the design of flapping-wing micro aerial vehicle (MAV) that pursue higher performance.


Assuntos
Aves/fisiologia , Voo Animal/fisiologia , Asas de Animais/fisiologia , Animais , Fenômenos Biomecânicos , Biomimética/métodos , Simulação por Computador , Modelos Biológicos
16.
J Neurochem ; 147(1): 84-98, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30071134

RESUMO

The nucleus accumbens (NAc) is a critical brain reward region that mediates the rewarding effects of drugs of abuse, including those of morphine and other opiates. Drugs of abuse induce widespread alterations in gene transcription and dendritic spine morphology in medium spiny neurons (MSNs) of the NAc that ultimately influence NAc excitability and hence reward-related behavioral responses. Growing evidence indicates that within the NAc small GTPases are common intracellular targets of drugs of abuse where these molecules regulate drug-mediated transcriptional and spine morphogenic effects. The RhoA small GTPase is among the most well-characterized members of the Ras superfamily of small GTPases, and recent work highlights an important role for hippocampal RhoA in morphine-facilitated reward behavior. Despite this, it remains unclear how RhoA pathway signaling in the NAc is affected by withdrawal from morphine. To investigate this question, using subcellular fractionation and subsequent protein profiling we examined the expression of key components of the RhoA pathway in NAc nuclear, cytoplasmic, and synaptosomal compartments during multiple withdrawal periods from repeated morphine administration. Furthermore, using in vivo viral-mediated gene transfer, we determined the consequences of revealed RhoA pathway alterations on NAc MSN dendritic spine morphology. Our findings reveal an important role for RhoA signaling cascades in mediating the effects of long-term morphine withdrawal on NAc MSN dendritic spine elimination. OPEN PRACTICES: Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/.


Assuntos
Morfina , Entorpecentes , Núcleo Accumbens/metabolismo , Núcleo Accumbens/patologia , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/patologia , Sinapses/metabolismo , Sinapses/patologia , Proteínas rho de Ligação ao GTP/biossíntese , Animais , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/efeitos dos fármacos , Recompensa , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Proteínas rho de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP
17.
J Neurosci ; 38(18): 4316-4328, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29626166

RESUMO

In human drug users, cue-induced drug craving progressively intensifies after drug abstinence, promoting drug relapse. This time-dependent progression of drug craving is recapitulated in rodent models, in which rats exhibit progressive intensification of cue-induced drug seeking after withdrawal from drug self-administration, a phenomenon termed incubation of drug craving. Although recent results suggest that functional alterations of the nucleus accumbens (NAc) contribute to incubation of drug craving, it remains poorly understood how NAc function evolves after drug withdrawal to progressively intensify drug seeking. The functional output of NAc relies on how the membrane excitability of its principal medium spiny neurons (MSNs) translates excitatory synaptic inputs into action potential firing. Here, we report a synapse-membrane homeostatic crosstalk (SMHC) in male rats, through which an increase or decrease in the excitatory synaptic strength induces a homeostatic decrease or increase in the intrinsic membrane excitability of NAc MSNs, and vice versa. After short-term withdrawal from cocaine self-administration, despite no actual change in the AMPA receptor-mediated excitatory synaptic strength, GluN2B NMDA receptors, the SMHC sensors of synaptic strength, are upregulated. This may create false SMHC signals, leading to a decrease in the membrane excitability of NAc MSNs. The decreased membrane excitability subsequently induces another round of SMHC, leading to synaptic accumulation of calcium-permeable AMPA receptors and upregulation of excitatory synaptic strength after long-term withdrawal from cocaine. Disrupting SMHC-based dysregulation cascades after cocaine exposure prevents incubation of cocaine craving. Thus, cocaine triggers cascades of SMHC-based dysregulation in NAc MSNs, promoting incubated cocaine seeking after drug withdrawal.SIGNIFICANCE STATEMENT Here, we report a bidirectional homeostatic plasticity between the excitatory synaptic input and membrane excitability of nucleus accumbens (NAc) medium spiny neurons (MSNs), through which an increase or decrease in the excitatory synaptic strength induces a homeostatic decrease or increase in the membrane excitability, and vice versa. Cocaine self-administration creates a false homeostatic signal that engages this synapse-membrane homeostatic crosstalk mechanism, and produces cascades of alterations in excitatory synapses and membrane properties of NAc MSNs after withdrawal from cocaine. Experimentally preventing this homeostatic dysregulation cascade prevents the progressive intensification of cocaine seeking after drug withdrawal. These results provide a novel mechanism through which drug-induced homeostatic dysregulation cascades progressively alter the functional output of NAc MSNs and promote drug relapse.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Fissura , Homeostase , Potenciais de Ação , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Transtornos Relacionados ao Uso de Cocaína/psicologia , Sinais (Psicologia) , Comportamento de Procura de Droga , Potenciais Pós-Sinápticos Excitadores , Quinases do Centro Germinativo , Masculino , Plasticidade Neuronal , Neurônios , Núcleo Accumbens/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Síndrome de Abstinência a Substâncias/patologia , Síndrome de Abstinência a Substâncias/psicologia , Sinapses
19.
Nat Med ; 23(9): 1102-1111, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28825715

RESUMO

Major depressive disorder (MDD) is a leading cause of disease burden worldwide. While the incidence, symptoms and treatment of MDD all point toward major sex differences, the molecular mechanisms underlying this sexual dimorphism remain largely unknown. Here, combining differential expression and gene coexpression network analyses, we provide a comprehensive characterization of male and female transcriptional profiles associated with MDD across six brain regions. We overlap our human profiles with those from a mouse model, chronic variable stress, and capitalize on converging pathways to define molecular and physiological mechanisms underlying the expression of stress susceptibility in males and females. Our results show a major rearrangement of transcriptional patterns in MDD, with limited overlap between males and females, an effect seen in both depressed humans and stressed mice. We identify key regulators of sex-specific gene networks underlying MDD and confirm their sex-specific impact as mediators of stress susceptibility. For example, downregulation of the female-specific hub gene Dusp6 in mouse prefrontal cortex mimicked stress susceptibility in females, but not males, by increasing ERK signaling and pyramidal neuron excitability. Such Dusp6 downregulation also recapitulated the transcriptional remodeling that occurs in prefrontal cortex of depressed females. Together our findings reveal marked sexual dimorphism at the transcriptional level in MDD and highlight the importance of studying sex-specific treatments for this disorder.


Assuntos
Encéfalo/metabolismo , Transtorno Depressivo Maior/genética , Estresse Psicológico/genética , Transcriptoma , Adulto , Idoso , Animais , Western Blotting , Estudos de Casos e Controles , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Hipocampo/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Pessoa de Meia-Idade , Núcleo Accumbens/metabolismo , Técnicas de Patch-Clamp , Córtex Pré-Frontal/metabolismo , Células Piramidais/metabolismo , Análise de Sequência de RNA , Caracteres Sexuais , Fatores Sexuais
20.
Oncotarget ; 8(4): 5668-5669, 2017 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-28086206
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA