Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38683183

RESUMO

Planar silicon nanowires (SiNWs), grown by using low temperature catalytic approaches, are excellent 1D channel materials for developing high-performance logics and sensors. However, a deterministic position and size control of the metallic catalyst droplets, that lead to the growth of SiNWs, remains still a significant challenge for reliable device integration. In this work, we present a convenient but powerful edge-trimming catalyst formation strategy, which can help to produce a rather uniform single-row of indium (In) catalyst droplets of Dcat = 67 ± 5 nm in diameter, with an exact one-droplet-on-one-step arrangement. This approach marks a significant achievement in self-assembled catalyst formation and offers a foundation to attain a reliable and scalable growth of density SiNW channels, via an in-plane solid-liquid-solid (IPSLS) mechanism, with a uniform diameter down to Dnw = 35 ± 4 nm, and do not rely on high-precision lithography techniques. Prototype SiNW-based field effect transistors (FETs) are also fabricated, with a high Ion/Ioff current ratio and small subthreshold swing of >107 and 262 mV·dec-1, respectively, indicating a reliable new routine to integrate a wide range of SiNW-based logic, sensor, and display applications.

2.
Research (Wash D C) ; 7: 0329, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476475

RESUMO

Integrated 2-dimensional (2D) photonic devices such as monolayer waveguide has generated exceptional interest because of their ultimate thinness. In particular, they potentially permit stereo photonic architecture through bond-free van der Waals integration. However, little is known about the coupling and controlling of the single-atom guided wave to its photonic environment, which governs the design and application of integrated system. Here, we report the optical coupling of atomically guided waves to other photonic modes. We directly probe the mode beating between evanescent waves in a monolayer 2D waveguide and a silicon photonic waveguide, which constitutes a vertically integrated interferometer. The mode-coupling measures the dispersion relation of the guided wave inside the atomic waveguide and unveils it strongly modifies matter's electronic states, manifesting by the formation of a propagating polariton. We also demonstrated light modulating and spectral detecting in this compact nonplanar interferometer. These findings provide a generalizable and versatile platform toward monolithic 3-dimensional integrated photonics.

3.
Nanotechnology ; 34(41)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37429258

RESUMO

Stretching elastomer bands to accumulate strain energy, for a sudden projectile launching, has been an old hunting skill that will continue to find new applications in miniaturized worlds. In this work, we explore the use of highly resilient and geometry-tailored ultrathin crystalline silicon nanowires (SiNWs) as elastic medium to fabricate the first, and the smallest, mechanical slingshot. These NW-morphed slingshots were first grown on a planar surface, with desired layout, and then mounted upon standing pillar frames, with a unique self-hooking structure that allows for a facile and reliable assembly, loading and shooting maneuver of microsphere payloads. Impressively, the elastic spring design can help to store 10 times more strain energy into the NW springs, compared with the straight ones under the same pulling force, which has been strong enough to overcome the sticky van der Waals (vdW) force at the touching interfaces that otherwise will hinder a reliable releasing onto soft surface with low-surface energy or adhesion force, and to achieve a directional shooting delivery of precise amount of tiny payload units onto delicate target with the least impact damage. This NW-morphing construction strategy also provides a generic protocol/platform to fast design, prototype, and deploy new nanoelectromechanical and biological applications at extremely low costs.

4.
Nat Commun ; 14(1): 3786, 2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37355640

RESUMO

Ultracompact and soft pairwise grippers, capable of swift large-amplitude multi-dimensional maneuvering, are widely needed for high-precision manipulation, assembly and treatment of microscale objects. In this work, we demonstrate the simplest construction of such robotic structures, shaped via a single-nanowire-morphing and powered by geometry-tailored Lorentz vectorial forces. This has been accomplished via a designable folding growth of ultralong and ultrathin silicon NWs into single and nested omega-ring structures, which can then be suspended upon electrode frames and coated with silver metal layer to carry a passing current along geometry-tailored pathway. Within a magnetic field, the grippers can be driven by the Lorentz forces to demonstrate swift large-amplitude maneuvers of grasping, flapping and twisting of microscale objects, as well as high-frequency or even resonant vibrations to overcome sticky van de Waals forces in microscale for a reliable releasing of carried payloads. More sophisticated and functional teamwork of mutual alignment, precise passing and selective light-emitting-diode unit testing and installation were also successfully accomplished via pairwise gripper collaborations. This single-nanowire-morphing strategy provides an ideal platform to rapidly design, construct and prototype a wide range of advanced ultracompact nanorobotic, mechanical sensing and biological manipulation functionalities.


Assuntos
Nanofios , Procedimentos Cirúrgicos Robóticos , Vibração , Altruísmo , Eletrodos
5.
Nat Commun ; 13(1): 7797, 2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528720

RESUMO

Quantum phase transition refers to the abrupt change of ground states of many-body systems driven by quantum fluctuations. It hosts various intriguing exotic states around its quantum critical points approaching zero temperature. Here we report the spectroscopic and transport evidences of quantum critical phenomena of an exciton Mott metal-insulator-transition in black phosphorus. Continuously tuning the interplay of electron-hole pairs by photo-excitation and using Fourier-transform photo-current spectroscopy as a probe, we measure a comprehensive phase diagram of electron-hole states in temperature and electron-hole pair density parameter space. We characterize an evolution from optical insulator with sharp excitonic transition to metallic electron-hole plasma phases featured by broad absorption and population inversion. We also observe strange metal behavior that resistivity is linear in temperature near the Mott transition boundaries. Our results exemplify an ideal platform to investigating strongly-correlated physics in semiconductors, such as crossover between superconductivity and superfluity of exciton condensation.

6.
Nano Lett ; 22(22): 8975-8982, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36374517

RESUMO

Moiré superlattices provide in-plane quantum restriction for light-matter interactions in twisted bilayer graphene (tBLG), leading to the exotic photon-Moiré physics and potential applications for light manipulation. Recently, our experiment identified a highly confined slow surface plasmons polaritons (SPPs) mode in tBLG. Here, we demonstrate that the propagation of the slow SPPs mode in tBLG is spatially tailored and steered at deep subwavelengths. Analysis by the perturbation theory indicates that the coupling between the slow SPPs mode and the Moiré system is greatly strengthened, which regulates the wavefront at the atomic scale and makes tBLG serve as a universal optical metamaterial. Consequently, the negative refraction is achieved at the interface of monolayer graphene and tBLG, by which a metalens with a controllable focal length and an extremely high resolution up to 1/150 of wavelength is devised. Our work paves the way for constructing optical metamaterial at the atomic scale and develops future photon-Moiré interaction systems.

7.
Small ; 18(42): e2204390, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36084173

RESUMO

Fabricating ultrathin silicon (Si) channels down to critical dimension (CD) <10 nm, a key capability to implementing cutting-edge microelectronics and quantum charge-qubits, has never been accomplished via an extremely low-cost catalytic growth. In this work, 3D stacked ultrathin Si nanowires (SiNWs) are demonstrated, with width and height of Wnw  = 9.9 ± 1.2 nm (down to 8 nm) and Hnw  = 18.8 ± 1.8 nm, that can be reliably grown into the ultrafine sidewall grooves, approaching to the CD of 10 nm technology node, thanks to a new self-delimited droplet control strategy. Interestingly, the cross-sections of the as-grown SiNW channels can also be easily tailored from fin-like to sheet-like geometries by tuning the groove profile, while a sharply folding guided growth indicates a unique capability to produce closely-packed multiple rows of stacked SiNWs, out of a single run growth, with the minimal use of catalyst metal. Prototype field effect transistors are also successfully fabricated, achieving Ion/off ratio and sub-threshold swing of >106 and 125 mV dec-1 , respectively. These results highlight the unexplored potential of versatile catalytic growth to compete with, or complement, the advanced top-down etching technology in the exploitation of monolithic 3D integration of logic-in-memory, neuromorphic and charge-qubit applications.


Assuntos
Nanofios , Silício , Catálise
8.
Nature ; 605(7908): 63-68, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35508778

RESUMO

Moiré superlattices have led to observations of exotic emergent electronic properties such as superconductivity and strong correlated states in small-rotation-angle twisted bilayer graphene (tBLG)1,2. Recently, these findings have inspired the search for new properties in moiré plasmons. Although plasmon propagation in the tBLG basal plane has been studied by near-field nano-imaging techniques3-7, the general electromagnetic character and properties of these plasmons remain elusive. Here we report the direct observation of two new plasmon modes in macroscopic tBLG with a highly ordered moiré superlattice. Using spiral structured nanoribbons of tBLG, we identify signatures of chiral plasmons that arise owing to the uncompensated Berry flux of the electron gas under optical pumping. The salient features of these chiral plasmons are shown through their dependence on optical pumping intensity and electron fillings, in conjunction with distinct resonance splitting and Faraday rotation coinciding with the spectral window of maximal Berry flux. Moreover, we also identify a slow plasmonic mode around 0.4 electronvolts, which stems from the interband transitions between the nested subbands in lattice-relaxed AB-stacked domains. This mode may open up opportunities for strong light-matter interactions within the highly sought after mid-wave infrared spectral window8. Our results unveil the new electromagnetic dynamics of small-angle tBLG and exemplify it as a unique quantum optical platform.

9.
J Phys Chem Lett ; 13(10): 2338-2347, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35254069

RESUMO

Optoelectronic synapses have been utilized as neuromorphic vision sensors for image preprocessing in artificial visual systems. Self-powered optoelectronic synapses, which can directly convert optical power into electrical power, are promising for practical applications. The Schottky junction tends to be a promising candidate as the energy source for electrical operations. However, fully utilizing the potential of Schottky barriers is still challenging. Herein, organic self-powered optoelectronic synapses with planar diode architecture are fabricated, which can simultaneously sense and process ultraviolet (UV) signals. The photovoltaic operations are facilitated by the built-in potential originating from the molecular-layer-defined asymmetric Schottky contacts. Diverse synaptic behaviors under UV light stimulation without external power supplies are facilitated by the interfacial carrier-capturing layer, which emulates the membranes of synapses. Furthermore, retina-inspired image preprocessing functions are demonstrated on the basis of synaptic plasticity. Therefore, our devices provide the potential for the development of power-efficient and advanced artificial visual systems.


Assuntos
Fontes de Energia Elétrica , Sinapses , Eletricidade , Sinapses/fisiologia , Raios Ultravioleta
10.
Adv Sci (Weinh) ; 9(9): e2105623, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35092351

RESUMO

Quasi-1D silicon nanowires (SiNWs) field effect transistors (FETs) integrated upon large-area elastomers are advantageous candidates for developing various high-performance stretchable electronics and displays. In this work, it is demonstrated that an orderly array of slim SiNW channels, with a diameter of <80 nm, can be precisely grown into desired locations via an in-plane solid-liquid-solid (IPSLS) mechanism, and reliably batch-transferred onto large area polydimethylsiloxane (PDMS) elastomers. Within an optimized discrete FETs-on-islands architecture, the SiNW-FETs can sustain large stretching strains up to 50% and repetitive testing for more than 1000 cycles (under 20% strain), while achieving a high hole carrier mobility, Ion /Ioff current ratio and subthreshold swing (SS) of ≈70 cm2 V-1 s-1 , >105  and 134 - 277 mV decade-1 , respectively, working stably in an ambient environment over 270 days without any passivation protection. These results indicate a promising new routine to batch-manufacture and integrate high-performance, scalable and stretchable SiNW-FET electronics that can work stably in harsh and large-strain environments, which is a key capability for future practical flexible display and wearable electronic applications.


Assuntos
Nanofios , Elastômeros , Eletrônica , Silício , Transistores Eletrônicos
11.
Small ; 18(6): e2104690, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34859580

RESUMO

Stretchable electronics are finding widespread applications in bio-sensing, skin-mimetic electronics, and flexible displays, where high-density integration of elastic and durable interconnections is a key capability. Instead of forming a randomly crossed nanowire (NW) network, here, a large-scale and precise integration of highly conductive nickel silicide nanospring (SiNix -NS) arrays are demonstrated, which are fabricated out of an in-plane solid-liquid-solid guided growth of planar Si nanowires (SiNWs), and subsequent alloy-forming process that boosts the channel conductivity over 4 orders of magnitude (to 2 × 104 S cm-1 ). Thanks to the narrow diameter of the serpentine SiNix -NS channels, the elastic geometry engineering can be accomplished within a very short interconnection distance (down to ≈3 µm), which is crucial for integrating high-density displays or logic units in a rigid-island and elastic-interconnection configuration. Deployed over soft polydimethylsiloxane thin film substrate, the SiNix -NS array demonstrates an excellent stretchability that can sustain up to 50% stretching and for 10 000 cycles (at 15%). This approach paves the way to integrate high-density inorganic electronics and interconnections for high-performance health monitoring, displays, and on-skin electronic applications, based on the mature and rather reliable Si thin film technology.


Assuntos
Nanofios , Condutividade Elétrica , Eletrônica
12.
Nanomaterials (Basel) ; 13(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36616032

RESUMO

Uniform growth of ultrathin silicon nanowire (SiNW) channels is the key to accomplishing reliable integration of various SiNW-based electronics, but remains a formidable challenge for catalytic synthesis, largely due to the lack of uniform size control of the leading metallic droplets. In this work, we explored a nanostripe-confined approach to produce highly uniform indium (In) catalyst droplets that enabled the uniform growth of an orderly SiNW array via an in-plane solid-liquid-solid (IPSLS) guided growth directed by simple step edges. It was found that the size dispersion of the In droplets could be reduced substantially from Dcatpl = 20 ± 96 nm on a planar surface to only Dcatns = 88 ± 13 nm when the width of the In nanostripe was narrowed to Wstr= 100 nm, which could be qualitatively explained in a confined diffusion and nucleation model. The improved droplet uniformity was then translated into a more uniform growth of ultrathin SiNWs, with diameter of only Dnw= 28 ± 4 nm, which has not been reported for single-edge guided IPSLS growth. These results lay a solid basis for the construction of advanced SiNW-derived field-effect transistors, sensors and display applications.

13.
Nanoscale ; 13(35): 15031-15037, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34533152

RESUMO

Complementary doping control in silicon nanowire (SiNW) channels is crucial for the construction of high-performance CMOS logics. Though planar in-plane solid-liquid-solid (IPSLS) growth, with an amorphous Si (a-Si) thin film as a precursor, has demonstrated a precise and scalable integration of orderly SiNWs, a complementary and tunable n-type doping has not been accomplished. This has been hindered by the fact that the phosphorus (P) gas dopants will react with the indium (In) catalyst droplet to form insoluble InP precipitates. Nevertheless, we herein report on an unexpected discovery that the P dopants first incorporated into the a-Si matrix can easily diffuse over the In catalyst droplets, without forming an InP compound, and thus reverse continuously the initial p-type SiNWs into an n-type channel. Uniform and efficient doping effects have been confirmed by both atomic probe tomography mapping and the transfer properties of SiNW FETs, which demonstrate a steep subthreshold swing of 105 mV dec-1, an on/off ratio of >107 and an electron mobility of 142 cm2 V-1 s-1. Finally, true CMOS inverters are successfully demonstrated based on the closely-packed SiNW channels of distinct doping polarities, indicating a new convenient and highly efficient doping routine to construct more advanced SiNW logics and sensors.

14.
Nanotechnology ; 32(26)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33752187

RESUMO

Ultrathin silicon nanowires (SiNWs) are ideal 1D channels to construct high performance nanoelectronics and sensors. We here report on a high-density catalytic growth of orderly ultrathin SiNWs, with diameter down toDnw=27±2nmand narrow NW-to-NW spacing of onlySnw âˆ¼80 nm, without the use of high-resolution lithography. This has been accomplished via a terrace-confined strategy, where tiny indium (In) droplets move on sidewall terraces to absorb precoated amorphous Si layer as precursor and produce self-aligned SiNW array. It is found that, under proper parameter control, a tighter terrace-step confinement can help to scale the dimensions of the SiNW array down to the extremes that have not been reported before, while maintaining still a stable guiding growth over complex contours. Prototype SiNW field effect transistors demonstrate a highIon/Ioffcurrent ratio ∼107, low leakage current of ∼0.3 pA and steep subthreshold swing of 220 mV dec-1. These results highlight the unexplored potential of catalytic growth in advanced nanostructure fabrication that is highly relevant for scalable SiNW logic and sensor applications.

15.
ACS Appl Mater Interfaces ; 13(12): 14377-14384, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33750109

RESUMO

Toxic gas monitoring at room temperature (RT) is of great concern to public health and safety, where ultrathin silicon nanowires (SiNWs), with diameter <80 nm, are ideal one-dimensional candidates to achieve high-performance field-effect sensing. However, a precise integration of the tiny SiNWs as active gas sensor channels has not been possible except for the use of expensive and inefficient electron beam lithography and etching. In this work, we demonstrate an integratable fabrication of field-effect sensors based on orderly SiNW arrays, produced via step-guided in-plane solid-liquid-solid growth. The back-gated SiNW sensors can be tuned into suitable subthreshold detection regime to achieve an outstanding field-effect sensitivity (75.8% @ 100 ppm NH3), low detection limit (100 ppb), and excellent selectivity to NH3 gas at RT, with fast response/recovery time scales (Tres/Trec) of 20 s (at 100 ppb NH3) and excellent repeatability and high stability over 180 days. These outstanding sensing performances can be attributed to the fast charge transfer between adsorbed NH3 molecules and the exposed SiNW channels, indicating a convenient strategy to fabricate and deploy high-performance gas detectors that are widely needed in the booming marketplace of wearable or portable electronics.

16.
Nano Lett ; 21(7): 2773-2779, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33729811

RESUMO

Free-standing silicon nanoprobes (SiNPs) are critical tools for intracellular bioelectrical signal recording, while a scalable fabrication of these tiny SiNPs with ab initio geometry designs has not been possible. In this work, we demonstrate a novel growth shaping of slim Si nanowires (SiNWs) into SiNPs with sharp tips (curvature radii <300 nm), tunable angles of 30°, 60°, to 120° and even programmable triangle/circular shapes. A precise growth integration of orderly single, double, and quadruple SiNPs at prescribed locations enables convenient electrode connection, transferring and mounting these tiny tips onto movable arms to serve as long-protruding (over 4-20 µm) nanoprobes. Mechanical flexibility, resilience, and field-effect sensing functionality of the SiNPs were systematically testified in liquid nanodroplet and cell environments. This highly reliable and economic manufacturing of advanced SiNPs holds a strong potential to boost and open up the market implementations of a wide range of intracellular sensing, monitoring, and editing applications.

17.
Nano Lett ; 21(1): 569-576, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33350839

RESUMO

Growing high quality silicon nanowires (SiNWs) at elevated temperature on cooler polymer films seems to be contradictive but highly desirable for building high performance flexible and wearable electronics. In this work, we demonstrate a superfast (vnw > 3.5 µm·s-1) growth of high quality SiNWs on polymer/glass substrates, powered by self-selected laser at 808 nm heating of indium catalyst droplets that absorb amorphous Si layer to produce SiNWs. Because of the tiny heat capacity of the nanodroplets, the SiNW growth can be quickly heated up and frozen via rapid laser ON/OFF switching, enabling a deterministic diameter modulation in the ultralong SiNWs. Finally, prototype field effect transistors are also fabricated upon the laser-droplet-heating grown SiNWs with a high Ion/Ioff ratio of >104 and reasonable subthreshold swing of 386 mV·dec-1, opening a generic new route to integrate high-quality NW channels directly upon large area and lightweight polymer substrates for developing high-performance flexible electronics.

18.
ACS Nano ; 14(12): 16634-16642, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33197172

RESUMO

The ability to detect the full-Stokes polarization of light is vital for a variety of applications that often require complex and bulky optical systems. Here, we report an on-chip polarimeter comprising four metasurface-integrated graphene-silicon photodetectors. The geometric chirality and anisotropy of the metasurfaces result in circular and linear polarization-resolved photoresponses, from which the full-Stokes parameters, including the intensity, orientation, and ellipticity of arbitrarily polarized incident infrared light (1550 nm), can be obtained. The design presents an ultracompact architecture while excluding the standard bulky optical components and structural redundancy. Computational extraction of full-Stokes parameters from mutual information among four detectors eliminates the need for a large absorption contrast between different polarization states. Our monolithic plasmonic metasurface integrated polarimeter is ideal for a variety of polarization-based applications including biological sensing, quantum information processing, and polarization photography.

19.
Nano Lett ; 20(10): 7489-7497, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32970444

RESUMO

Bottom-up catalytic growth offers a high-yield, versatile, and powerful tool for the construction of versatile 3D nanocomplexes, while the major challenge is to achieve a precise location and uniformity control, as guaranteed by top-down lithography. Here, an unprecedented uniform and reliable growth integration of 10-layer stacked Si nanowires (SiNWs) has been accomplished, for the very first time, via a new groove-confined and tailored catalyst formation and guided growth upon the truncated sidewall of SiO2/SiNx multilayers. The SiNW array accomplishes a narrow diameter of Dnw = 28 ± 2.4 nm, NW-to-NW spacing of tsp = 40 nm, and extremely stable growth over Lnw > 50 µm and bending locations, which can compete with or even outperform the state-of-the-art top-down lithography and etching approaches, in terms of stacking number, channel uniformity at different levels, fabrication cost, and efficiency. These results provide a solid basis to establish a new 3D integration approach to batch-manufacture various advanced electronic and sensor applications.

20.
Nano Lett ; 20(7): 5072-5080, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32520566

RESUMO

Three-dimensional (3D) construction of free-standing silicon (Si) nanohelices has been a formidable challenge for planar lithography and etching technology. We here demonstrate a convenient 3D growth and integration of Si nanohelices (SiNHs) upon bamboolike cylinders with corrugated sidewall grooves, where the indium catalyst droplets grow around the cylinders in a helical fashion, while consuming precoated amorphous Si (a-Si) thin film to produce crystalline Si nanowires on the sidewalls. At the end of each groove cycle, the droplets are enforced to linefeed/switch into the neighbor groove to continue a spiral growth of SiNHs with readily tunable diameter, pitch, aspect-ratio, and chiral/achiral symmetries. In addition, the SiNHs can be reliably released as free-standing units to serve as elastic links, supports and vibrational resonators. These results highlight the unexplored potential of high precision 3D self-assembly growth in constructing a wide range of sophisticated electromechanical, sensor, and optoelectronic functionalities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA