Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
1.
Chemistry ; : e202401243, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711202

RESUMO

Axially chiral cycloalkylidenes are interesting but less developedaxially chiral molecules. Here, a bispidine-based chiral amine catalytic system was developed to promote efficiently the asymmetric Knoevenagel condensation ofN-protected oxindoles and benzofuranones with 4-substituted cyclohexanones. A variety of alkylidenecycloalkanes with stable axial chirality were obtained in good yields with high er. Based on the absolute configuration determination of product and DFT calculations, a possible mechanism of stereoselective induction was proposed.

2.
Ocul Immunol Inflamm ; : 1-11, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709230

RESUMO

PURPOSE: We aimed to evaluate adalimumab efficacy in patients with initial-onset or recurrent Vogt-Koyanagi-Harada (VKH) syndrome. METHODS: A retrospective clinical study was performed to examine the therapeutic effect of adalimumab in 22 VKH patients,16 with initial-onset and six with recurrent VKH. Another 22 patients with initial-onset VKH who did not receive adalimumab were included as controls. The main observational parameters included the central macular thickness (CMT), subfoveal choroidal thickness (SCT), best-corrected visual acuity (BCVA), anterior chamber cell grade (ACC), glucocorticoid dose (GCD), and the development of sunset glow fundus. MRNA sequencing was used to profile the tumor necrosis factor (TNF)-α pathway in peripheral blood mononuclear cells obtained from nine patients with initial-onset VKH disease, six patients with recurrent VKH, and eight healthy controls. RESULTS: In the initial-onset group, adalimumab therapy significantly improved the BCVA, CMT, SCT, and ACC. Furthermore, adalimumab significantly decreased GCD in patients with initial-onset. In patients with recurrent VKH, the SCT significantly improved after adalimumab treatment, but no significant changes in BCVA, CMT, and ACC were observed. All six patients experienced relapse during follow-up. The TNF-α pathway exhibited a significant increase in initial-onset VKH when compared with that in both healthy controls and recurrent patients. Conversely, it was suppressed in recurrent VKH when compared with that in the initial-onset or healthy control groups. CONCLUSIONS: In patients with initial-onset VKH, adalimumab effectively reduces glucocorticoid dependence. However, adalimumab may not be effective for preventing relapse or providing long-term inflammation relief in patients with recurrent VKH.

4.
Phytochemistry ; 222: 114102, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641144

RESUMO

Furanocoumarins (FCs) are widely distributed secondary metabolites found in higher plants, including Apiaceae, Rutaceae, Moraceae, and Fabaceae. They play a crucial role in the physiological functions of plants and are well-known for their diverse pharmacological activities. As a representative plant of the Apiaceae family, Angelica sinensis is highly valued for its medicinal properties and FCs are one of the main ingredients of A. sinensis. However, the biosynthetic mechanism of FCs in A. sinensis remains poorly understood. In this study, we successfully cloned and verified three types of enzymes using genome analysis and in vitro functional verification, which complete the biosynthesis of the FCs core skeleton in A. sinensis. It includes a p-coumaroyl CoA 2'-hydroxylase (AsC2'H) responsible for umbelliferone formation, two UbiA prenyltransferases (AsPT1 and AsPT2) that convert umbelliferone to demethylsuberosin (DMS) and osthenol, respectively, and two CYP736 subfamily cyclases (AsDC and AsOD) that catalyze the formation of FCs core skeleton. Interestingly, AsOD was demonstrated to be a bifunctional cyclase and could catalyze both DMS and osthenol, but had a higher affinity to osthenol. The characterization of these enzymes elucidates the molecular mechanism of FCs biosynthesis, providing new insights and technologies for understanding the diverse origins of FCs biosynthesis.


Assuntos
Angelica sinensis , Furocumarinas , Furocumarinas/química , Furocumarinas/metabolismo , Furocumarinas/biossíntese , Angelica sinensis/química , Angelica sinensis/metabolismo , Estrutura Molecular
5.
Environ Res ; 252(Pt 3): 118989, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38677406

RESUMO

Wastewater treatment plants (WWTPs) have a certain removal capacity for polycyclic aromatic hydrocarbons (PAHs) and their derivatives, but some of them are discharged with effluent into the environment, which can affect the environment. Therefore, to understand the presence, sources, and potential risks of PAHs and their derivatives in WWTPs. Sixteen PAHs, three chlorinated polycyclic aromatic hydrocarbons (ClPAHs), three oxidized polycyclic aromatic hydrocarbons (OPAHs), and three methylated polycyclic aromatic hydrocarbons (MPAHs) were detected in the influent and effluent water of three WWTPs in China. The average concentrations of their influent ∑PAHs, ∑ClPAHs, ∑OPAHs, and ∑MPAHs ranged from 2682.50 to 2774.53 ng/L, 553.26-906.28 ng/L, 415.40-731.56 ng/L, and 534.04-969.83 ng/L, respectively, and the effluent concentrations ranged from 823.28 to 993.37 ng/L, 269.43-489.94 ng/L, 285.93-463.55 ng/L, and 376.25-512.34 ng/L, respectively. The growth of heat transport and industrial energy consumption in the region has a significant impact on the level of PAHs in WWTPs. According to the calculated removal efficiencies of PAHs and their derivatives in the three WWTPs (A, B, and C), the removal rates of PAHs and their derivatives were 69-72%, 62-71%, and 68-73%, respectively, and for the substituted polycyclic aromatic hydrocarbons (SPAHs), the removal rates were 41-49%, 31-40%, and 33-39%, respectively; moreover, the removal rates of PAHs were greater than those of SPAHs in the WWTPs. The results obtained via the ratio method indicated that the main sources of PAHs in the influent of WWTPs were the combustion of coal and biomass, and petroleum contamination was the secondary source. In risk evaluation, there were 5 compounds for which the risk quotient was considered high ecological risk. During chronic disease evaluation, there were 11 compounds with a risk quotient considered to indicate high risk. PAHs and SPAHs with high relative molecular masses in the effluent of WWTPs pose more serious environmental hazards than their PAHs counterparts.

6.
Opt Lett ; 49(8): 1993-1996, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621059

RESUMO

Unsupervised spectral reconstruction (SR) aims to recover the hyperspectral image (HSI) from corresponding RGB images without annotations. Existing SR methods achieve it from a single RGB image, hindered by the significant spectral distortion. Although several deep learning-based methods increase the SR accuracy by adding RGB images, their networks are always designed for other image recovery tasks, leaving huge room for improvement. To overcome this problem, we propose a novel, to our knowledge, approach that reconstructs the HSI from a pair of RGB images captured under two illuminations, significantly improving reconstruction accuracy. Specifically, an SR iterative model based on two illuminations is constructed at first. By unfolding the proximal gradient algorithm solving this SR model, an interpretable unsupervised deep network is proposed. All the modules in the proposed network have precise physical meanings, which enable our network to have superior performance and good generalization capability. Experimental results on two public datasets and our real-world images show the proposed method significantly improves both visually and quantitatively as compared with state-of-the-art methods.

7.
Anal Chim Acta ; 1302: 342492, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38580406

RESUMO

The rational design of DNA tracks is an effective pathway to guide the autonomous movement and high-efficiency recognition in DNA walkers, showing outstanding advantages for the cascade signal amplification of electrochemical biosensors. However, the uncontrolled distance between two adjacent tracks on the electrode could increase the risk of derailment and interruption of the reaction. Hence, a novel four-way balanced cruciform-shaped DNA track (C-DNT) was designed as a structured pathway to improve the effectiveness and stability of the reaction in DNA walkers. In this work, two kinds of cruciform-shaped DNA were interconnected as a robust structure that could avoid the invalid movement of the designed DNA walker on the electrode. When hairpin H2 was introduced onto the electrode, the strand displacement reaction (SDR) effectively triggered movements of the DNA walker along the cruciform-shaped track while leaving ferrocene (Fc) on the electrode, leading to a significant enhancement of the electrochemical signal. This design enabled the walker to move in an excellent organized and controllable manner, thus enhancing the reaction speed and walking efficiency. Compared to other walkers moving on random tracks, the reaction time of the C-DNT-based DNA walker could be reduced to 20 min. Lead ion (Pb2+) was used as a model target to evaluate the analytical performance of this biosensor, which exhibited a low detection limit of 0.033 pM along with a wide detection ranging from 0.1 pM to 500 nM. This strategy presented a novel concept for designing a high-performance DNA walker-based sensing platform for the detection of contaminants.


Assuntos
Técnicas Biossensoriais , Chumbo , DNA Cruciforme , Limite de Detecção , DNA/química , Técnicas Eletroquímicas
8.
BMC Ophthalmol ; 24(1): 196, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671401

RESUMO

BACKGROUND: The aim of this study was to report the clinical profile of new-onset and relapse of uveitis following rapid spreading of coronavirus disease 2019 (COVID-19) infection due to change of anti-COVID-19 policies in China and investigate potential risk factors for inflammation relapse. METHODS: In this retrospective case-control study, patients with new-onset or a history of uveitis between December 23, 2022, and February 28, 2023, were included to assess the influence of COVID-19 infection on uveitis. Detailed information on demographic data, clinical characteristics, treatment measures, treatment response, and ocular inflammatory status before and after COVID-19 infection was collected. RESULTS: This study included 349 patients with a history of uveitis. The uveitis relapse rate was higher (28.8%, n = 288) in those with COVID-19 infection than in patients without COVID-19 infection (14.8%, n = 61) (P = 0.024). Among the relapse cases, 50.8% experienced a relapse of anterior uveitis, while 49.2% had a relapse of uveitis involving the posterior segment. Multivariable regression analysis indicated a positive correlation between disease duration and uveitis relapse, while the last relapse exceeding one year before COVID-19 infection and the use of methotrexate during COVID-19 infection were negatively correlated with relapse of uveitis. Thirteen patients who developed new-onset uveitis following COVID-19 infection were included; among them, three (23.1%) had anterior uveitis and 10 (76.9%) had uveitis affecting the posterior segment. Regarding cases involving the posterior segment, four patients (30.8%) were diagnosed with Vogt-Koyanagi-Harada disease. CONCLUSIONS: COVID-19 infection increases the rate of uveitis relapse. Long disease duration is a risk factor, while time since the last relapse more than 1 year and methotrexate use are protective factors against uveitis relapse.


Assuntos
COVID-19 , Recidiva , SARS-CoV-2 , Uveíte , Humanos , COVID-19/epidemiologia , COVID-19/complicações , Masculino , Feminino , Estudos Retrospectivos , China/epidemiologia , Fatores de Risco , Uveíte/diagnóstico , Uveíte/epidemiologia , Uveíte/etiologia , Uveíte/tratamento farmacológico , Pessoa de Meia-Idade , Adulto , Estudos de Casos e Controles , Idoso
9.
Plants (Basel) ; 13(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38592894

RESUMO

Fusarium crown rot (FCR), primarily caused by Fusarium pseudograminearum, has emerged as a new threat to wheat production and quality in North China. Genetic enhancement of wheat resistance to FCR remains the most effective approach for disease control. In this study, we phenotyped 435 Chinese wheat cultivars through FCR inoculation at the seedling stage in a greenhouse. Our findings revealed that only approximately 10.8% of the wheat germplasms displayed moderate or high resistance to FCR. A genome-wide association study (GWAS) using high-density 660K SNP led to the discovery of a novel quantitative trait locus on the long arm of chromosome 3B, designated as Qfcr.hebau-3BL. A total of 12 significantly associated SNPs were closely clustered within a 1.05 Mb physical interval. SNP-based molecular markers were developed to facilitate the practical application of Qfcr.hebau-3BL. Among the five candidate FCR resistance genes within the Qfcr.hebau-3BL, we focused on TraesCS3B02G307700, which encodes a protein kinase, due to its expression pattern. Functional validation revealed two transcripts, TaSTK1.1 and TaSTK1.2, with opposing roles in plant resistance to fungal disease. These findings provide insights into the genetic basis of FCR resistance in wheat and offer valuable resources for breeding resistant varieties.

10.
J Colloid Interface Sci ; 666: 66-75, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38583211

RESUMO

Perovskite CsPbBr3 quantum dot shows great potential in artificial photosynthesis, attributed to its outstanding optoelectronic properties. Nevertheless, its photocatalytic activity is hindered by insufficient catalytic active sites and severe charge recombination. In this work, a CsPbBr3@Ag-C3N4 ternary heterojunction photocatalyst is designed and synthesized for high-efficiency CO2 reduction. The CsPbBr3 quantum dots and Ag nanoparticles are chemically anchored on the surface of g-C3N4 sheets, forming an electron transfer tunnel from CsPbBr3 quantum dots to Ag nanoparticles via g-C3N4 sheets. The resulting CsPbBr3@Ag-C3N4 ternary photocatalyst, with spatial separation of photogenerated carriers, achieves a remarkable conversion rate of 19.49 µmol·g-1·h-1 with almost 100 % CO selectivity, a 3.13-fold enhancement in photocatalytic activity as compared to CsPbBr3 quantum dots. Density functional theory calculations reveal the rapid CO2 adsorption/activation and the decreased free energy (0.66 eV) of *COOH formation at the interface of Ag nanoparticles and g-C3N4 in contrast to the g-C3N4, leading to the excellent photocatalytic activity, while the thermodynamically favored CO desorption contributes to the high CO selectivity. This work presents an innovative strategy of constructing perovskite-based photocatalyst by modulating catalyst structure and offers profound insights for efficient CO2 conversion.

11.
STAR Protoc ; 5(2): 102969, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38502687

RESUMO

The expeditious identification and comprehensive analysis of clonal families from extensive B cell receptor (BCR) repertoire sequencing data are imperative for elucidating the intricacies of B cell immune responses. Here, we introduce a computational pipeline designed to swiftly deduce clonal families from bulk BCR heavy-chain sequencing data, accompanied by a suite of functional modules tailored to streamline post-clustering analysis. The outlined methodology encompasses guidelines for software installation, meticulous data preparation, and the systematic inference and analysis of clonal families. For complete details on the use and execution of this protocol, please refer to Wang et al.1.

12.
Heliyon ; 10(6): e27354, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38509909

RESUMO

Clear cell renal cell carcinoma (ccRCC) is known as the most common type of renal cancer. Recently, a series of advances have been made in targeted therapy for ccRCC. To combat this highly metastatic tumor, novel therapeutic targets still need to be developed. C-type lectins (CLECs) contain a characteristic C-type lectin-like domain and affect several physiological functions. The effects of C-type lectin 2D (CLEC2D) on cancer progression have been revealed in several types of cancers; however, its expression in ccRCC tissues, and the possible effects on the progression and metastasis of ccRCC, are still unclear. Herein, we found the high mRNA and protein levels of CLEC2D in ccRCC tissues. We further found that CLEC2D expression was correlated with the prognosis of ccRCC patients and correlated with the tumor size (p = 0.019*) of patients. In addition, CLEC2D affected tumor immune infiltration, confirmed by the further analysis. CLEC2D knockdown suppressed the proliferation of ccRCC cells in vitro and restrained ccRCC tumor growth and immune infiltration in mice. Therefore, we believe that CLEC2D has the potential to serve as a promising ccRCC therapeutic target.

13.
Anal Chem ; 96(12): 4987-4996, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38466896

RESUMO

Surfactants are considered as typical emerging pollutants, their extensive use of in disinfectants has hugely threatened the ecosystem and human health, particularly during the pandemic of coronavirus disease-19 (COVID-19), whereas the rapid discrimination of multiple surfactants in environments is still a great challenge. Herein, we designed a fluorescent sensor array based on luminescent metal-organic frameworks (UiO-66-NH2@Au NCs) for the specific discrimination of six surfactants (AOS, SDS, SDSO, MES, SDBS, and Tween-20). Wherein, UiO-66-NH2@Au NCs were fabricated by integrating UiO-66-NH2 (2-aminoterephthalic acid-anchored-MOFs based on zirconium ions) with gold nanoclusters (Au NCs), which exhibited a dual-emission features, showing good luminescence. Interestingly, due to the interactions of surfactants and UiO-66-NH2@Au NCs, the surfactants can differentially regulate the fluorescence property of UiO-66-NH2@Au NCs, producing diverse fluorescent "fingerprints", which were further identified by pattern recognition methods. The proposed fluorescence sensor array achieved 100% accuracy in identifying various surfactants and multicomponent mixtures, with the detection limit in the range of 0.0032 to 0.0315 mM for six pollutants, which was successfully employed in the discrimination of surfactants in real environmental waters. More importantly, our findings provided a new avenue in rapid detection of surfactants, rendering a promising technique for environmental monitoring against trace multicontaminants.

14.
Int J Pharm ; 654: 123955, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38423155

RESUMO

Many chemotherapeutic agents can induce immunogenic cell death (ICD), which leads to the release of danger-associated molecular patterns (DAMPs) and tumor-associated antigens. This process promotes dendritic cells (DCs) maturation and cytotoxic T lymphocyte (CTL) infiltration. However, cancer cells can employ diverse mechanisms to evade the host immune system. Recent studies have shown that stimulator of interferon genes (STING) agonists, such as cGAMP, can amplify ICD-triggered immune responses and enhance the infiltration of immune cells into the tumor microenvironment (TME). Building upon these findings, we constructed a doxorubicin (DOX) and cGAMP co-delivery system (DOX/cGAMP@NPs) for melanoma and triple-negative breast cancer (TNBC) therapy. The results demonstrated that DOX could effectively destroy tumors and induce the release of DAMPs by ICD. Furthermore, in orthotopic 4T1 tumors mice model and subcutaneous B16 tumor mice model, cGAMP could promote the maturation of DCs and CD8+ T cell activation and infiltration by inducing the secretion of type I interferons and pro-inflammation cytokine, which amplified the antitumor immune response induced by DOX. This strategy also promoted the depletion of immunosuppressive cells, potentially alleviating the immunosuppressive TME. In conclusion, our study highlights the combination of DOX-induced ICD and the immune-enhancing properties of cGAMP holds significant implications for future research and clinical applications.


Assuntos
Melanoma , Neoplasias , Animais , Camundongos , Doxorrubicina , Nucleotídeos Cíclicos/farmacologia , Neoplasias/tratamento farmacológico , Citocinas , Melanoma/tratamento farmacológico , Microambiente Tumoral , Imunoterapia , Linhagem Celular Tumoral
15.
J Exp Psychol Learn Mem Cogn ; 50(4): 550-561, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38330335

RESUMO

The biological motion refers to the continuous configuration movement of live agents in space. The perceptual processing of biological motion has the specificity of the dissociation between body form and body motion. However, there is limited evidence for whether such specificity continues when holding biological motion in working memory. We explored this question from the perspective of field dependence (FD) and field independence (FI) cognitive styles in the current study. Three categories of biological motion have been developed: intact movement, motion feature, and form feature. We examined the working memory capacity of motion features, form features, intact movements (Experiments 1-3), and the recognition of three categories of biological motion when remembering intact movements (Experiment 4). The results showed that for the motion features, FI individuals had better memory performance when remembering five items and showed greater working memory capacity and recognition compared with FD individuals, whereas the opposite pattern was observed between FI and FD individuals for the form features. The cognitive style could modulate the working memory storage of biological motion when the task becomes demanding, suggesting that body form and body motion are dissociable in working memory. Our study provided additional evidence for the specificity of biological motion processing in working memory, extending the hierarchical neural model. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Assuntos
Área de Dependência-Independência , Memória de Curto Prazo , Humanos , Cognição , Pensamento , Rememoração Mental
16.
J Am Chem Soc ; 146(10): 6638-6651, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38415351

RESUMO

Covalent organic cages are a prominent class of discrete porous architectures; however, their structural isomerism remains relatively unexplored. Here, we demonstrate the structural isomerism of chiral covalent organic cages that renders distinct enantioselective catalytic properties. Imine condensations of tetra-topic 5,10-di(3,5-diformylphenyl)-5,10-dihydrophenazine and ditopic 1,2-cyclohexanediamine produce two chiral [4 + 8] organic cage isomers with totally different topologies and geometries that depend on the orientations of four tetraaldehyde units with respect to each other. One isomer (PN-1) has an unprecedented Johnson-type J26 structure, whereas another (PN-2) adopts a tetragonal prismatic structure. After the reduction of the imine linkages, the cages are transformed into two amine bond-linked isomers PN-1R and PN-2R. After binding to Ni(II) ions, both can serve as efficient catalysts for asymmetric Michael additions, whereas PN-2R affords obviously higher enantioselectivity and reactivity than PN-1R presumably because of its large cavity and open windows that can concentrate reactants for the reactions. Density-functional theory (DFT) calculations further confirm that the enantioselective catalytic performance varies depending on the isomer.

17.
Sensors (Basel) ; 24(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38400286

RESUMO

The monitoring of the lifetime of cutting tools often faces problems such as life data loss, drift, and distortion. The prediction of the lifetime in this situation is greatly compromised with respect to the accuracy. The recent rise of deep learning, such as Gated Recurrent Unit Units (GRUs), Hidden Markov Models (HMMs), Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Attention networks, and Transformers, has dramatically improved the data problems in tool lifetime prediction, substantially enhancing the accuracy of tool wear prediction. In this paper, we introduce a novel approach known as PCHIP-Enhanced ConvGRU (PECG), which leverages multiple-feature fusion for tool wear prediction. When compared to traditional models such as CNNs, the CNN Block, and GRUs, our method consistently outperformed them across all key performance metrics, with a primary focus on the accuracy. PECG addresses the challenge of missing tool wear measurement data in relation to sensor data. By employing PCHIP interpolation to fill in the gaps in the wear values, we have developed a model that combines the strengths of both CNNs and GRUs with data augmentation. The experimental results demonstrate that our proposed method achieved an exceptional relative accuracy of 0.8522, while also exhibiting a Pearson's Correlation Coefficient (PCC) exceeding 0.95. This innovative approach not only predicts tool wear with remarkable precision, but also offers enhanced stability.

18.
BMC Infect Dis ; 24(1): 261, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409020

RESUMO

Vagococcus fluvialis infection is rare in humans, and there is limited research on the clinical manifestations and antimicrobial susceptibility testing of Vagococcus fluvialis infection. Here, We isolated Vagococcus fluvialis from the urine samples of bladder cancer patients at Hunan Provincial People's Hospital, and it is the first reported case of Vagococcus fluvialis isolated from the urine. The fully automated microbial identification system and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) identified the bacterium as Vagococcus fluvialis with a confidence level of 99.9%. The VITEK-2Compact fully automated microbial susceptibility analysis system indicated that it was most sensitive to tigecycline, vancomycin, quinupristin/dalfopristin, linezolid, and showed moderate sensitivity to erythromycin, levofloxacin, ciprofloxacin, ampicillin/sulbactam, and tetracycline. Additionally, it exhibited synergy when combined with high-level gentamicin and vancomycin, showing sensitivity. However, it displayed poor activity against penicillin and furanth. According to our knowledge, this is the first study to isolate and identify Vagococcus fluvialis from the urine of bladder cancer patients and the systematically reviewed other reported Vagococcus infections on human, which provide an experimental basis for guiding the rational use of drugs in the clinical treatment and diagnose of Vagococcus fluvialis infection and related pathogenic mechanism research. Meanwhile, we have systematically reviewed other reported.


Assuntos
Cocos Gram-Positivos , Neoplasias da Bexiga Urinária , Humanos , Vancomicina , Testes de Sensibilidade Microbiana , Enterococcaceae , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
19.
Sci Total Environ ; 919: 170530, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38311081

RESUMO

Chalcopyrite, renowned for its distinctive mixed redox-couple characteristics, exhibits excellent electron transfer properties both on its surface and within its crystal structure. This unique characteristic has attracted significant attention in various fields, including optics, electronics, and magnetism, as well as demonstrated remarkable catalytic efficacy in the environmental field. The rapid and effective electron transfer capability of a catalyst is crucial for advanced oxidation processes (AOPs). However, the performance of CuFeS2 in AOPs is hindered by its low electron transfer efficacy. This review aims to summarize the key steps and mechanisms of chalcopyrite-induced AOPs and provide strategies for enhancing effective electron transfer efficacies by controlling the structure and function of synthetic/natural chalcopyrite. These strategies include enhancing the catalytic performance of chalcopyrite and constructing composites to enhance catalytic activity (e.g., chelating agents, heterojunctions). Additionally, the factors influencing the generation of reactive oxygen species in chalcopyrite-induced AOPs are investigated, such as the types and properties of oxidants (e.g., H2O2, peroxymonocarbonate), the microstructure of catalysts, and reaction conditions in catalytic systems (e.g., pH values, dosage, temperature). Future perspectives on the applications of chalcopyrite are presented at the end of this paper. Overall, this review assists in narrowing the scope of chalcopyrite studies in AOPs and aids researchers in optimizing synthetic/natural catalysts for contaminant treatment.

20.
Environ Res ; 247: 118258, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38262512

RESUMO

Developing efficient catalytic systems for water contamination removal is a topic of great interest. However, the use of heterogeneous catalysts faces challenges due to insufficient active sites and electron cycling. In this study, results from first-principles calculations demonstrate that dual reaction centers (DRCs) are produced around the Cu and Mn sites in Cu1.0/Mn1.0-ZnO due to the electronegativity difference. Experimental results reveal the material with DRCs greatly enhances electron transfer efficiency and significantly impacts the oxidation and reduction of peroxymonosulfate (PMS). In addition, the self-consistent potential correction (SCPC) method was introduced to correct the energy and charge of charged periodic systems simulating a catalytic process, resulting in more precise catalytic results. Specifically, the material exhibits a preference for adsorbing negatively charged PMS anions at electron-deficient Mn sites, facilitating PMS oxidation for the generation of 1O2, and PMS reduction around the electron-rich Cu for the formation of •OH and SO4•-. The major reactive oxygen species is 1O2, showcasing effective performance in various degradation systems. Overall, our work provides novel insights into the persulfate-based heterogeneous catalytic oxidation process, paving the way for the development of high-performance catalytic systems for water purification.


Assuntos
Óxido de Zinco , Peróxidos , Espécies Reativas de Oxigênio , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA