Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38752723

RESUMO

A causal relationship exists among the aging process, organ decay and disfunction, and the occurrence of various diseases including cancer. A genetically engineered mouse model, termed Klf1K74R/K74R or Klf1(K74R), carrying mutation on the well-conserved sumoylation site of the hematopoietic transcription factor KLF1/EKLF has been generated that possesses extended lifespan and healthy characteristics, including cancer resistance. We show that the healthy longevity characteristics of the Klf1(K74R) mice, as exemplified by their higher anti-cancer capability, are likely gender-, age-, and genetic background-independent. Significantly, the anti-cancer capability, in particular that against melanoma as well as hepatocellular carcinoma, and lifespan-extending property of Klf1(K74R) mice, could be transferred to wild-type mice via transplantation of their bone marrow mononuclear cells at a young age of the latter. Furthermore, NK(K74R) cells carry higher in vitro cancer cell-killing ability than wild-type NK cells. Targeted/global gene expression profiling analysis has identified changes in the expression of specific proteins, including the immune checkpoint factors PDCD and CD274, and cellular pathways in the leukocytes of the Klf1(K74R) that are in the directions of anti-cancer and/or anti-aging. This study demonstrates the feasibility of developing a transferable hematopoietic/blood system for long-term anti-cancer and, potentially, for anti-aging.


Assuntos
Fatores de Transcrição Kruppel-Like , Longevidade , Animais , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Longevidade/genética , Células Matadoras Naturais/imunologia , Neoplasias/genética , Engenharia Genética , Transplante de Medula Óssea , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos Transgênicos
2.
Int J Mol Sci ; 21(22)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182781

RESUMO

Erythroid Krüppel-like factor (EKLF/KLF1) was identified initially as a critical erythroid-specific transcription factor and was later found to be also expressed in other types of hematopoietic cells, including megakaryocytes and several progenitors. In this study, we have examined the regulatory effects of EKLF on hematopoiesis by comparative analysis of E14.5 fetal livers from wild-type and Eklf gene knockout (KO) mouse embryos. Depletion of EKLF expression greatly changes the populations of different types of hematopoietic cells, including, unexpectedly, the long-term hematopoietic stem cells Flk2- CD34- Lin- Sca1+ c-Kit+ (LSK)-HSC. In an interesting correlation, Eklf is expressed at a relatively high level in multipotent progenitor (MPP). Furthermore, EKLF appears to repress the expression of the colony-stimulating factor 2 receptor ß subunit (CSF2RB). As a result, Flk2- CD34- LSK-HSC gains increased differentiation capability upon depletion of EKLF, as demonstrated by the methylcellulose colony formation assay and by serial transplantation experiments in vivo. Together, these data demonstrate the regulation of hematopoiesis in vertebrates by EKLF through its negative regulatory effects on the differentiation of the hematopoietic stem and progenitor cells, including Flk2- CD34- LSK-HSCs.


Assuntos
Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Animais , Antígenos CD34/genética , Antígenos CD34/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem da Célula/genética , Linhagem da Célula/fisiologia , Células Cultivadas , Subunidade beta Comum dos Receptores de Citocinas/genética , Subunidade beta Comum dos Receptores de Citocinas/metabolismo , Hematopoese/genética , Hematopoese/fisiologia , Transplante de Células-Tronco Hematopoéticas , Homeostase , Fatores de Transcrição Kruppel-Like/deficiência , Fatores de Transcrição Kruppel-Like/genética , Fígado/citologia , Fígado/embriologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tirosina Quinase 3 Semelhante a fms/deficiência , Tirosina Quinase 3 Semelhante a fms/genética
3.
Sci Rep ; 6: 37490, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27886214

RESUMO

DNA methylation at C of CpG dyads (mCpG) in vertebrate genomes is essential for gene regulation, genome stability and development. We show in this study that proper functioning of post-replicative DNA mismatch repair (MMR) in mammalian cells relies on the presence of genomic mCpG, as well as on the maintenance DNA methyltransferase Dnmt1 independently of its catalytic activity. More importantly, high efficiency of mammalian MMR surveillance is achieved through a hemi-mCpG-Np95(Uhrf1)-Dnmt1 axis, in which the MMR surveillance complex(es) is recruited to post-replicative DNA by Dnmt1, requiring its interactions with MutSα, as well as with Np95 bound at the hemi-methylated CpG sites. Thus, efficiency of MMR surveillance over the mammalian genome in vivo is enhanced at the epigenetic level. This synergy endows vertebrate CpG methylation with a new biological significance and, consequently, an additional mechanism for the maintenance of vertebrate genome stability.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1/genética , Reparo de Erro de Pareamento de DNA , DNA/genética , Epigênese Genética , Genoma , Proteínas Nucleares/genética , Animais , Proteínas Estimuladoras de Ligação a CCAAT , Ilhas de CpG , DNA/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Células HEK293 , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas Nucleares/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Transfecção , Ubiquitina-Proteína Ligases
4.
Epigenomics ; 6(3): 353-63, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25111488

RESUMO

Vertebrate DNA methyltransferases (DNMTs) have been thought to primarily function to covalently add a methyl group to the 5-position of cytosine. However, recent discovery of the DNA demethylation and dehydroxymethylation activities of DNMTs in vitro suggest new routes to complete the dynamic cycle of DNA methylation-demethylation of the vertebrate genomes. The in vitro reaction conditions suggest that vertebrate DNMTs can switch from DNA methylases to DNA dehydroxymethylases under oxidative stress and to DNA demethylases in the presence of calcium ion under nonreducing conditions. These environmental parameters provide clues regarding the choices in vivo of DNMT activities utilized in different physiological systems. In particular, the nature of these parameters suggest that the DNA demethylation and dehydroxymethylation activities of the vertebrate DNMTs play essential roles in multiple biological processes including early embryo development, regulation of neuronal plasticity, tumorigenesis and hormone-regulated transcription.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Vertebrados/genética , Animais , Cálcio/metabolismo , Genoma , Humanos , Plasticidade Neuronal , Estresse Oxidativo , Vertebrados/embriologia
5.
J Biol Chem ; 288(13): 9084-91, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23393137

RESUMO

Methylation at the 5-position of DNA cytosine on the vertebrate genomes is accomplished by the combined catalytic actions of three DNA methyltransferases (DNMTs), the de novo enzymes DNMT3A and DNMT3B and the maintenance enzyme DNMT1. Although several metabolic routes have been suggested for demethylation of the vertebrate DNA, whether active DNA demethylase(s) exist has remained elusive. Surprisingly, we have found that the mammalian DNMTs, and likely the vertebrates DNMTs in general, can also act as Ca(2+) ion- and redox state-dependent active DNA demethylases. This finding suggests new directions for reinvestigation of the structures and functions of these DNMTs, in particular their roles in Ca(2+) ion-dependent biological processes, including the genome-wide/local DNA demethylation during early embryogenesis, cell differentiation, neuronal activity-regulated gene expression, and carcinogenesis.


Assuntos
5-Metilcitosina/química , DNA (Citosina-5-)-Metiltransferases/metabolismo , Animais , Cálcio/metabolismo , Núcleo Celular/metabolismo , Cromatografia em Camada Fina/métodos , Citosina/química , Epigênese Genética , Regulação Enzimológica da Expressão Gênica , Genômica , Células HEK293 , Humanos , Íons , Masculino , Camundongos , Oxirredução , Transdução de Sinais , Espermatozoides/metabolismo , Suínos , DNA Metiltransferase 3B
6.
J Biol Chem ; 287(40): 33116-21, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22898819

RESUMO

For cytosine (C) demethylation of vertebrate DNA, it is known that the TET proteins could convert 5-methyl C (5-mC) to 5-hydroxymethyl C (5-hmC). However, DNA dehydroxymethylase(s), or enzymes able to directly convert 5-hmC to C, have been elusive. We present in vitro evidence that the mammalian de novo DNA methyltransferases DNMT3A and DNMT3B, but not the maintenance enzyme DNMT1, are also redox-dependent DNA dehydroxymethylases. Significantly, intactness of the C methylation catalytic sites of these de novo enzymes is also required for their 5-hmC dehydroxymethylation activity. That DNMT3A and DNMT3B function bidirectionally both as DNA methyltransferases and as dehydroxymethylases raises intriguing and new questions regarding the structural and functional aspects of these enzymes and their regulatory roles in the dynamic modifications of the vertebrate genomes during development, carcinogenesis, and gene regulation.


Assuntos
DNA (Citosina-5-)-Metiltransferases/fisiologia , Metilases de Modificação do DNA/fisiologia , Animais , Núcleo Celular/metabolismo , Cromatografia em Camada Fina/métodos , DNA/química , DNA (Citosina-5-)-Metiltransferases/química , Metilação de DNA , DNA Metiltransferase 3A , Metilases de Modificação do DNA/química , Dioxigenases/genética , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Modelos Biológicos , Oxirredução , Plasmídeos/metabolismo , DNA Metiltransferase 3B
7.
Oncogene ; 23(47): 7898-902, 2004 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-15378011

RESUMO

We have examined the relationship between DNA mismatch repair and deficiency of DNA methylation in a mouse embryonic cell line, Dnmt1-/- ES, with homologous deletion of the gene coding for the maintenance DNA methyltransferase Dnmt1. With the use of a sensitive PCR for the assay of two mononucleotide- and three dinucleotide microsatellite markers that exhibited instabilities in mismatch repair-deficient cells, significantly higher frequencies of instability were detected at three of the five markers in Dnmt1-/- ES than the wild-type ES. The data suggest that Dnmt1 enzyme plays an integrating role in DNA replication and/or repair. The implication that Dnmt1 enzyme and/or cytosine methylation may participate in the strand discrimination of mismatch repair during eukaryotic DNA replication is discussed.


Assuntos
Pareamento Incorreto de Bases/genética , DNA (Citosina-5-)-Metiltransferases/genética , Reparo do DNA/genética , Animais , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/deficiência , Replicação do DNA/genética , Camundongos , Camundongos Knockout , Repetições de Microssatélites/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA