Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 13(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37296715

RESUMO

BACKGROUND: Lumbar degenerative disc disease (LDDD) is a leading cause of chronic lower back pain; however, a lack of clear diagnostic criteria and solid LDDD interventional therapies have made predicting the benefits of therapeutic strategies challenging. Our goal is to develop machine learning (ML)-based radiomic models based on pre-treatment imaging for predicting the outcomes of lumbar nucleoplasty (LNP), which is one of the interventional therapies for LDDD. METHODS: The input data included general patient characteristics, perioperative medical and surgical details, and pre-operative magnetic resonance imaging (MRI) results from 181 LDDD patients receiving lumbar nucleoplasty. Post-treatment pain improvements were categorized as clinically significant (defined as a ≥80% decrease in the visual analog scale) or non-significant. To develop the ML models, T2-weighted MRI images were subjected to radiomic feature extraction, which was combined with physiological clinical parameters. After data processing, we developed five ML models: support vector machine, light gradient boosting machine, extreme gradient boosting, extreme gradient boosting random forest, and improved random forest. Model performance was measured by evaluating indicators, such as the confusion matrix, accuracy, sensitivity, specificity, F1 score, and area under the receiver operating characteristic curve (AUC), which were acquired using an 8:2 allocation of training to testing sequences. RESULTS: Among the five ML models, the improved random forest algorithm had the best performance, with an accuracy of 0.76, a sensitivity of 0.69, a specificity of 0.83, an F1 score of 0.73, and an AUC of 0.77. The most influential clinical features included in the ML models were pre-operative VAS and age. In contrast, the most influential radiomic features had the correlation coefficient and gray-scale co-occurrence matrix. CONCLUSIONS: We developed an ML-based model for predicting pain improvement after LNP for patients with LDDD. We hope this tool will provide both doctors and patients with better information for therapeutic planning and decision-making.

2.
Diagnostics (Basel) ; 13(5)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36900125

RESUMO

Positron emission tomography and computed tomography with 18F-fluorodeoxyglucose (18F-FDG PET-CT) were used to predict outcomes after liver transplantation in patients with hepatocellular carcinoma (HCC). However, few approaches for prediction based on 18F-FDG PET-CT images that leverage automatic liver segmentation and deep learning were proposed. This study evaluated the performance of deep learning from 18F-FDG PET-CT images to predict overall survival in HCC patients before liver transplantation (LT). We retrospectively included 304 patients with HCC who underwent 18F-FDG PET/CT before LT between January 2010 and December 2016. The hepatic areas of 273 of the patients were segmented by software, while the other 31 were delineated manually. We analyzed the predictive value of the deep learning model from both FDG PET/CT images and CT images alone. The results of the developed prognostic model were obtained by combining FDG PET-CT images and combining FDG CT images (0.807 AUC vs. 0.743 AUC). The model based on FDG PET-CT images achieved somewhat better sensitivity than the model based on CT images alone (0.571 SEN vs. 0.432 SEN). Automatic liver segmentation from 18F-FDG PET-CT images is feasible and can be utilized to train deep-learning models. The proposed predictive tool can effectively determine prognosis (i.e., overall survival) and, thereby, select an optimal candidate of LT for patients with HCC.

3.
J Pers Med ; 12(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35055316

RESUMO

Parkinson's disease (PD), a progressive disease that affects movement, is related to dopaminergic neuron degeneration. Tc-99m Trodat-1 brain (TRODAT) single-photon emission computed tomography (SPECT) aids the functional imaging of dopamine transporters and is used for dopaminergic neuron enumeration. Herein, we employed a convolutional neural network to facilitate PD diagnosis through TRODAT SPECT, which is simpler than models such as VGG16 and ResNet50. We retrospectively collected the data of 3188 patients (age range 20-107 years) who underwent TRODAT SPECT between June 2011 and December 2019. We developed a set of functional imaging multiclassification deep learning algorithms suitable for TRODAT SPECT on the basis of the annotations of medical experts. We then applied our self-proposed model and compared its results with those of four other models, including deep and machine learning models. TRODAT SPECT included three images collected from each patient: one presenting the maximum absorption of the metabolic function of the striatum and two adjacent images. An expert physician determined that our model's accuracy, precision, recall, and F1-score were 0.98, 0.98, 0.98, and 0.98, respectively. Our TRODAT SPECT model provides an objective, more standardized classification correlating to the severity of PD-related diseases, thereby facilitating clinical diagnosis and preventing observer bias.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA