Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 325: 117864, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38325671

RESUMO

ETHNOPHARMACOLOGY RELEVANCE: Cananga oil (CO) is derived from the flowers of the traditional medicinal plant, the ylang-ylang tree. As a traditional antidepressant, CO is commonly utilized in the treatment of various mental disorders including depression, anxiety, and autism. It is also recognized as an efficient antibacterial insecticide, and has been traditionally utilized to combat malaria and acute inflammatory responses resulting from bacterial infections both in vitro and in vivo. AIM OF THE STUDY: The objective of this study is to comprehensively investigate the anti-Salmonella activity and mechanism of CO both in vitro and in vivo, with the expectation of providing feasible strategies for exploring new antimicrobial strategies and developing novel drugs. METHODS: The in vitro antibacterial activity of CO was comprehensively analyzed by measuring MIC, MBC, growth curve, time-killing curve, surface motility, biofilm, and Live/dead bacterial staining. The analysis of the chemistry and active ingredients of CO was conducted using GC-MS. To examine the influence of CO on the membrane homeostasis of Salmonella, we conducted utilizing diverse techniques, including ANS, PI, NPN, ONPG, BCECF-AM, DiSC3(5), and scanning electron microscopy (SEM) analysis. In addition, the antibacterial mechanism of CO was analyzed and validated through metabolomics analysis. Finally, a mouse infection model of Salmonella typhimurium was established to evaluate the toxic side effects and therapeutic effects of CO. RESULTS: The antibacterial effect of CO is the result of the combined action of the main chemical components within its six (palmitic acid, α-linolenic acid, stearic acid, benzyl benzoate, benzyl acetate, and myristic acid). Furthermore, CO disrupts the balance of purine metabolism and the tricarboxylic acid cycle (TCA cycle) in Salmonella, interfering with redox processes. This leads to energy metabolic disorders and oxidative stress damage within the bacteria, resulting in bacterial shock, enhanced membrane damage, and ultimately bacterial death. It is worth emphasizing that CO exerts an effective protective influence on Salmonella infection in vivo within a non-toxic concentration range. CONCLUSION: The outcomes indicate that CO displays remarkable anti-Salmonella activity both in vitro and in vivo. It triggers bacterial death by disrupting the balance of purine metabolism and the TCA cycle, interfering with the redox process, making it a promising anti-Salmonella medication.


Assuntos
Cananga , Infecções por Salmonella , Humanos , Animais , Camundongos , Ciclo do Ácido Cítrico , Infecções por Salmonella/tratamento farmacológico , Óleos de Plantas/farmacologia , Óleos de Plantas/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Homeostase , Purinas/farmacologia , Testes de Sensibilidade Microbiana
2.
J Hazard Mater ; 398: 122905, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32768820

RESUMO

Excessive chlorpyrifos (CPF) in the environment causes toxicity to nontarget organisms by triggering oxidative stress. Phosphatase and tensin homolog deleted on chromosome ten (PTEN) plays an important role in controlling apoptosis and necrosis by negatively regulating the phosphatidylinositol 3-kinase/threonine kinase (PI3K/AKT) pathway. However, the effects of different concentrations of CPF on grass fish liver cell injury and the role of the ROS/PTEN/PI3K/AKT axis remain poorly understood. In this study, L8824 cells treated with different concentrations of CPF (0, 40, 60, or 80 µM) were used as the research object. The results showed that the median inhibitory concentration (IC50) was 112.226 µM. As the CPF concentrations increased, the ROS and MDA levels increased, and the T-AOC levels and SOD/GPx/GST activities decreased. As PTEN expression increased, PI3K/AKT, BCL-2, and Caspase-8 expression dramatically decreased. Conversely, RIPK1/RIPK3/MLKL and Bax/Cyt-c/Caspase-3 expression increased. Additionally, necroptosis increased in a dose-dependent manner, while apoptosis first increased and then decreased. In conclusion, our study showed that CPF could trigger oxidative stress and induce apoptosis and necroptosis in fish liver cells by regulating the ROS/PTEN/PI3K/AKT axis, and the type of damage induced was dose-dependent. These results are meaningful for toxicological studies of CPF and efforts to protect the ecosystem.


Assuntos
Clorpirifos , Animais , Apoptose , Clorpirifos/toxicidade , Ecossistema , Necroptose , Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio , Transdução de Sinais , Treonina
3.
Metallomics ; 12(4): 562-571, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32125337

RESUMO

Multiple tissue necrosis is one of the morphological features of selenium deficiency-mediated injury. MicroRNA (miRNA) participates in the occurrence and development of necroptosis by regulating target genes. Necroptosis is a programmed form of necrosis, and it is closely related to lipopolysaccharide (LPS)-induced injury. Our aim was to investigate whether Se deficiency can promote tracheal injury caused by LPS through miRNA-induced necroptosis. By establishing models of tracheal injury in Se-deficient chickens, we verified the targeting relationship between chicken-derived miR-16-5p and PI3K through bioinformatics, qRT-PCR and WB analyses, and we measured the changes in the expression of genes related to the PI3K/AKT pathway, RIP3/MLKL pathway and MAPK pathway and of heat shock proteins. Under the condition of Se deficiency, the following results were observed: PI3K/AKT expression decreased with the upregulation of miR-16-5p, the expression of necroptosis-related factors (TNF-α, RIP1, FADD, RIP3 and MLKL) increased, and the expression of Caspase 8 significantly decreased (p < 0.05). Light microscopy observations indicated that cell necrosis was the main pathological change due to Se deficiency injury in the tracheal epithelium. The MAPK pathway was activated, and HSP expression was upregulated, indicating that the MAPK pathway and HSPs are both involved in Se deficiency-mediated necroptosis. In addition, Se deficiency promoted the expression of necroptosis-related genes in LPS-treated chickens (p < 0.05), and the pathological changes of cell necrosis were more obvious. In conclusion, we demonstrated that Se deficiency regulates the miR-16-5p-PI3K/AKT pathway and exacerbates LPS-induced necroptosis in chicken tracheal epithelial cells by activating necroptosis-related genes.


Assuntos
Galinhas/genética , Regulação da Expressão Gênica , Lipopolissacarídeos/farmacologia , MicroRNAs/genética , Necroptose/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/genética , Selênio/administração & dosagem , Traqueia/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Galinhas/metabolismo , Dieta , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Selênio/deficiência , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Traqueia/citologia , Traqueia/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA