Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 109, 2024 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-38281050

RESUMO

BACKGROUND: Major depressive disorder (MDD) is a common mental illness that affects millions of people worldwide and imposes a heavy burden on individuals, families and society. Previous studies on MDD predominantly focused on neurons and employed bulk homogenates of brain tissues. This paper aims to decipher the relationship between oligodendrocyte lineage (OL) development and MDD at the single-cell resolution level. METHODS: Here, we present the use of a guided regularized random forest (GRRF) algorithm to explore single-nucleus RNA sequencing profiles (GSE144136) of the OL at four developmental stages, which contains dorsolateral prefrontal cortex of 17 healthy controls (HC) and 17 MDD cases, generated by Nagy C et al. We prioritized and ordered differentially expressed genes (DEGs) based on Nagy et al., which could predominantly discriminate cells in the four developmental stages and two adjacent developmental stages of the OL. We further screened top-ranked genes that distinguished between HC and MDD in four developmental stages. Moreover, we estimated the performance of the GRRF model via the area under the curve value. Additionally, we validated the pivotal candidate gene Malat1 in animal models. RESULTS: We found that, among the four developmental stages, the onset development of OL (OPC2) possesses the best predictive power for distinguishing HC and MDD, and long noncoding RNA MALAT1 has top-ranked importance value in candidate genes of four developmental stages. In addition, results of fluorescence in situ hybridization assay showed that Malat1 plays a critical role in the occurrence of depression. CONCLUSIONS: Our work elucidates the mechanism of MDD from the perspective of OL development at the single-cell resolution level and provides novel insight into the occurrence of depression.


Assuntos
Transtorno Depressivo Maior , RNA Longo não Codificante , Humanos , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Linhagem da Célula/genética , Hibridização in Situ Fluorescente , RNA Longo não Codificante/metabolismo , Córtex Pré-Frontal/metabolismo , Perfilação da Expressão Gênica , Expressão Gênica
2.
IEEE Trans Cybern ; 53(7): 4320-4333, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35486569

RESUMO

The problem of fixed-time (FXT) and preassigned-time (PAT) optimization is concerned in this article based on multiagent systems (MASs) and power-law algorithms. Under the framework of strong convexity of the cost functions, two types of piecewise algorithms are proposed, which ensure that the FXT optimization can be solved either by first achieving the FXT consensus or by first achieving local optimization. Correspondingly, the PAT optimization problem is also considered by designing several piecewise protocols, where the finished time of optimization can be arbitrary prescribed according to actual demands. Furthermore, these piecewise power-law algorithms on the weighted undirected graphs are generalized to the weighted digraphs. Finally, by providing two numerical examples, the presented algorithms are further verified.

3.
ISA Trans ; 136: 254-266, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36446687

RESUMO

This paper is concentrated on the fixed/preassigned-time (FXT/PAT) synchronization of multilayered networks, in which the self-dynamics of nodes are heterogeneous and the synchronized state can be an arbitrary prescribed smooth orbit. Above all, the original network is augmented by involving the synchronized state as a virtual node, it is allowed to remove the topological connectivity limitations and reduce the conservatism of the synchronization conditions. Subsequently, several continuous control protocols have been developed to achieve FXT synchronization and some effective criteria are established by utilizing the theorem of FXT stability. Additionally, the relationship is revealed between the estimation of the synchronized time and the layer parameter. Moreover, the PAT synchronization is investigated for a preassigned synchronized time by proposing two control schemes with finite control gains. Eventually, the developed control designs and criteria are validated by some numerical simulations.

4.
Artigo em Inglês | MEDLINE | ID: mdl-35622804

RESUMO

Taking into account the infinite distributed delays and reaction-diffusions, this article investigates the global exponential synchronization problem of a class of memristor-based competitive neural networks (MCNNs) with different time scales. Based on the Lyapunov-Krasovskii functional and inequality approach, an adaptive control approach is proposed to ensure the exponential synchronization of the addressed drive-response networks. The closed-loop system is a discontinuous and delayed partial differential system in a cascade form, involving the spatial diffusion, the infinite distributed delays, the parametric adaptive law, the state-dependent switching parameters, and the variable structure controllers. By combining the theories of nonsmooth analysis, partial differential equation (PDE) and adaptive control, we present a new analytical method for rigorously deriving the synchronization of the states of the complex system. The derived m-norm (m ≥ 2)-based synchronization criteria are easily verified and the theoretical results are easily extended to memristor-based neural networks (NNs) without different time scales and reaction-diffusions. Finally, numerical simulations are presented to verify the effectiveness of the theoretical results.

5.
IEEE Trans Cybern ; 52(5): 3359-3369, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-32784148

RESUMO

In this article, the fault detection (FD) filter design problem is addressed for discrete-time memristive neural networks with time delays. When constructing the system model, an event-triggered communication mechanism is investigated to reduce the communication burden and a fault weighting matrix function is adopted to improve the accuracy of the FD filter. Then, based on the Lyapunov functional theory, an augmented Lyapunov functional is constructed. By utilizing the summation inequality approach and the improved reciprocally convex combination method, an FD filter that guarantees the asymptotic stability and the prescribed H∞ performance level of the residual system is designed. Finally, numerical simulations are provided to illustrate the effectiveness of the presented results.


Assuntos
Comunicação , Redes Neurais de Computação , Fatores de Tempo
6.
Neural Netw ; 146: 341-349, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34929417

RESUMO

The fixed-time synchronization and preassigned-time synchronization of quaternion-valued neural networks are concerned in this article. By developing fixed-time stability and proposing a pure power-law control scheme, some simple conditions are obtained to realize fixed-time synchronization of quaternion-valued neural networks and the upper bound of the synchronized time is provided. Furthermore, the preassigned-time synchronization of quaternion-valued neural networks is investigated based on pure power-law control design, where the synchronization time is preassigned in advance and the control gains are finite. Note that the designed controllers in this paper are the pure power-law forms, which are simpler and more effective compared with the traditional design composed of the linear part and power-law part. Eventually, an example is given to illustrate the feasibility and validity of the results obtained.


Assuntos
Redes Neurais de Computação
7.
IEEE Trans Neural Netw Learn Syst ; 32(6): 2535-2546, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32663134

RESUMO

In this article, it addresses the problem of finite-/fixed-time synchronization of delayed coupled discontinuous neural networks in the unified framework. To achieve the finite-/fixed-time synchronization and precise estimations of setting time, two novel different kinds of controllers are established, in which one is switching. Then, based on the finite-/fixed-time theorem and Lyapunov function theory, some useful criteria are obtained to select suitable controllers' parameters, which can guarantee error systems converge in the finite time/fixed time with respect to coupled neural networks. Moreover, corresponding estimations of the setting time are also provided. Finally, two numerical examples are introduced to show the effectiveness of the proposed control protocols.

8.
IEEE Trans Cybern ; 51(5): 2813-2823, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-31689225

RESUMO

This article addresses two kinds of formation tracking problems, namely: 1) the practical formation tracking (PFT) problem and 2) the zero-error formation tracking (ZEFT) problem for multiple Euler-Lagrange systems with input disturbances and unknown models. In these problems, the bounded input constraint, which can be possibly caused by actuator saturation and power limitations, is taken into consideration. Then, the two classes of model-independent distributed control approaches, in which the prior information (i.e., the structures and features) of the system model is not used, are proposed correspondingly. Based on the nonsmooth analysis and Lyapunov stability theory, several novel criteria for achieving PFT and ZEFT of multiple Euler-Lagrange systems are derived. Finally, numerical simulations and comparisons are presented to verify the validity and effectiveness of the proposed control approaches.

9.
IEEE Trans Cybern ; 51(6): 3004-3016, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31880580

RESUMO

In this article, the problems of finite-time/fixed-time synchronization have been investigated for discontinuous neural networks in the unified framework. To achieve the finite-time/fixed-time synchronization, a novel unified integral sliding-mode manifold is introduced, and corresponding unified control strategies are provided; some criteria are established for selecting suitable parameters for solving the related issue, namely, the dynamics of neural network can reach the designed sliding-mode manifold in finite/fixed time, and stay on it thereafter. Moreover, the estimations of setting time are given out. The established unified framework can bring in various protocols by choosing the different parameters of controllers and sliding-mode manifold, which extend previous related results. Finally, some numerical examples are introduced to show the effectiveness and superiority of resulting conclusions.

10.
Neural Netw ; 124: 50-59, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31982673

RESUMO

This paper mainly deals with the problem of exponential and adaptive synchronization for a type of inertial complex-valued neural networks via directly constructing Lyapunov functionals without utilizing standard reduced-order transformation for inertial neural systems and common separation approach for complex-valued systems. At first, a complex-valued feedback control scheme is designed and a nontrivial Lyapunov functional, composed of the complex-valued state variables and their derivatives, is proposed to analyze exponential synchronization. Some criteria involving multi-parameters are derived and a feasible method is provided to determine these parameters so as to clearly show how to choose control gains in practice. In addition, an adaptive control strategy in complex domain is developed to adjust control gains and asymptotic synchronization is ensured by applying the method of undeterminated coefficients in the construction of Lyapunov functional and utilizing Barbalat Lemma. Lastly, a numerical example along with simulation results is provided to support the theoretical work.


Assuntos
Redes Neurais de Computação , Retroalimentação , Fatores de Tempo
11.
IEEE Trans Cybern ; 50(11): 4658-4669, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31725407

RESUMO

This article investigates the global stabilization problem of Takagi-Sugeno fuzzy memristor-based neural networks with reaction-diffusion terms and distributed time-varying delays. By using the Green formula and proposing fuzzy feedback controllers, several algebraic criteria dependent on the diffusion coefficients are established to guarantee the global exponential stability of the addressed networks. Moreover, a simpler stability criterion is obtained by designing an adaptive fuzzy controller. The results derived in this article are generalized and include some existing ones as special cases. Finally, the validity of the theoretical results is verified by two examples.

12.
Neural Netw ; 105: 65-74, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29758462

RESUMO

This paper deals with the stabilization problem of memristive recurrent neural networks with inertial items, discrete delays, bounded and unbounded distributed delays. First, for inertial memristive recurrent neural networks (IMRNNs) with second-order derivatives of states, an appropriate variable substitution method is invoked to transfer IMRNNs into a first-order differential form. Then, based on nonsmooth analysis theory, several algebraic criteria are established for the global stabilizability of IMRNNs under proposed feedback control, where the cases with both bounded and unbounded distributed delays are successfully addressed. Finally, the theoretical results are illustrated via the numerical simulations.


Assuntos
Aprendizado de Máquina , Retroalimentação
13.
IEEE Trans Neural Netw Learn Syst ; 29(5): 1477-1490, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28362594

RESUMO

This paper is concerned with robust finite-time stabilization for a class of fractional-order neural networks (FNNs) with two types of activation functions (i.e., discontinuous and continuous activation function) under uncertainty. It is worth noting that there exist few results about FNNs with discontinuous activation functions, which is mainly because classical solutions and theories of differential equations cannot be applied in this case. Especially, there is no relevant finite-time stabilization research for such system, and this paper makes up for the gap. The existence of global solution under the framework of Filippov for such system is guaranteed by limiting discontinuous activation functions. According to set-valued analysis and Kakutani's fixed point theorem, we obtain the existence of equilibrium point. In particular, based on differential inclusion theory and fractional Lyapunov stability theory, several new sufficient conditions are given to ensure finite-time stabilization via a novel discontinuous controller, and the upper bound of the settling time for stabilization is estimated. In addition, we analyze the finite-time stabilization of FNNs with Lipschitz-continuous activation functions under uncertainty. The results of this paper improve corresponding ones of integer-order neural networks with discontinuous and continuous activation functions. Finally, three numerical examples are given to show the effectiveness of the theoretical results.

14.
Neural Netw ; 87: 122-131, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28110107

RESUMO

This paper addresses the controller design problem for global fixed-time synchronization of delayed neural networks (DNNs) with discontinuous activations. To solve this problem, adaptive control and state feedback control laws are designed. Then based on the two controllers and two lemmas, the error system is proved to be globally asymptotically stable and even fixed-time stable. Moreover, some sufficient and easy checked conditions are derived to guarantee the global synchronization of drive and response systems in fixed time. It is noted that the settling time functional for fixed-time synchronization is independent on initial conditions. Our fixed-time synchronization results contain the finite-time results as the special cases by choosing different values of the two controllers. Finally, theoretical results are supported by numerical simulations.


Assuntos
Retroalimentação , Redes Neurais de Computação , Algoritmos , Fatores de Tempo
15.
IEEE Trans Neural Netw Learn Syst ; 28(11): 2648-2659, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28113640

RESUMO

Finite-time stability problem has been a hot topic in control and system engineering. This paper deals with the finite-time stabilization issue of memristor-based delayed neural networks (MDNNs) via two control approaches. First, in order to realize the stabilization of MDNNs in finite time, a delayed state feedback controller is proposed. Then, a novel adaptive strategy is applied to the delayed controller, and finite-time stabilization of MDNNs can also be achieved by using the adaptive control law. Some easily verified algebraic criteria are derived to ensure the stabilization of MDNNs in finite time, and the estimation of the settling time functional is given. Moreover, several finite-time stability results as our special cases for both memristor-based neural networks (MNNs) without delays and neural networks are given. Finally, three examples are provided for the illustration of the theoretical results.Finite-time stability problem has been a hot topic in control and system engineering. This paper deals with the finite-time stabilization issue of memristor-based delayed neural networks (MDNNs) via two control approaches. First, in order to realize the stabilization of MDNNs in finite time, a delayed state feedback controller is proposed. Then, a novel adaptive strategy is applied to the delayed controller, and finite-time stabilization of MDNNs can also be achieved by using the adaptive control law. Some easily verified algebraic criteria are derived to ensure the stabilization of MDNNs in finite time, and the estimation of the settling time functional is given. Moreover, several finite-time stability results as our special cases for both memristor-based neural networks (MNNs) without delays and neural networks are given. Finally, three examples are provided for the illustration of the theoretical results.

16.
Neural Netw ; 83: 32-41, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27544331

RESUMO

In this paper, stability for a class of uncertain switched neural networks with time-varying delay is investigated. By exploring the mode-dependent properties of each subsystem, all the subsystems are categorized into stable and unstable ones. Based on Lyapunov-like function method and average dwell time technique, some delay-dependent sufficient conditions are derived to guarantee the exponential stability of considered uncertain switched neural networks. Compared with general results, our proposed approach distinguishes the stable and unstable subsystems rather than viewing all subsystems as being stable, thus getting less conservative criteria. Finally, two numerical examples are provided to show the validity and the advantages of the obtained results.


Assuntos
Redes Neurais de Computação , Algoritmos , Tempo , Incerteza
17.
Cell Physiol Biochem ; 39(1): 102-14, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27322747

RESUMO

BACKGROUND/AIMS: Acute myocardial infarction (AMI) is a devastating cardiovascular disease with a high rate of morbidity and mortality, partly due to enhanced arrhythmogenicity. MicroRNAs (miRNAs) have been shown to participate in the regulation of cardiac ion channels and the associated arrhythmias. The purpose of this study was to test our hypothesis that miR-223-3p contributes to the electrical disorders in AMI via modulating KCND2, the gene encoding voltage-gated channel Kv4.2 that carries transient outward K+ current Ito. METHODS: AMI model was established in male Sprague-Dawley (SD) rats by left anterior descending artery (LAD) ligation. Evans blue and TTC staining was used to measure infarct area. Ito was recorded in isolated ventricular cardiomyocytes or cultured neonatal rat ventricular cells (NRVCs) by whole-cell patch-clamp techniques. Western blot analysis was employed to detect the protein level of Kv4.2 and real-time RT-PCR to determine the transcript level of miR-223-3p. Luciferase assay was used to examine the interaction between miR-223-3p and KCND2 in cultured NRVCs. RESULTS: Expression of miR-223-3p was remarkably upregulated in AMI relative to sham control rats. On the contrary, the protein level of Kv4.2 and Ito density were significantly decreased in AMI. Consistently, transfection of miR-223-3p mimic markedly reduced Kv4.2 protein level and Ito current in cultured NRVCs. Co-transfection of AMO-223-3p (an antisense inhibitor of miR-223-3p) reversed the repressive effect of miR-223-3p. Luciferase assay showed that miR-223-3p, but not the negative control, substantially suppressed the luciferase activity, confirming the direct binding of miR-223-3p to the seed site within the KCND2 sequence. Finally, direct intramuscular injection of AMO-223-3p into the ischemic myocardium to knockdown endogenous miR-223-3p decreased the propensity of ischemic arrhythmias. CONCLUSIONS: Upregulation of miR-223-3p in AMI repressed the expression of KCND2/Kv4.2 resulting in reduction of Ito density that can cause APD prolongation and promote arrhythmias in AMI, and therefore knockdown of endogenous miR-223-3p might be considered a new approach for antiarrhythmic therapy of ischemic arrhythmias.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/genética , Infarto do Miocárdio/genética , Canais de Potássio Shal/genética , Animais , Animais Recém-Nascidos , Western Blotting , Células Cultivadas , Ativação do Canal Iônico/genética , Ativação do Canal Iônico/fisiologia , Masculino , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Técnicas de Patch-Clamp , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Canais de Potássio Shal/metabolismo , Canais de Potássio Shal/fisiologia
18.
Neural Netw ; 76: 46-54, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26878721

RESUMO

This paper is concerned with the finite-time robust stabilization of delayed neural networks (DNNs) in the presence of discontinuous activations and parameter uncertainties. By using the nonsmooth analysis and control theory, a delayed controller is designed to realize the finite-time robust stabilization of DNNs with discontinuous activations and parameter uncertainties, and the upper bound of the settling time functional for stabilization is estimated. Finally, two examples are provided to demonstrate the effectiveness of the theoretical results.


Assuntos
Retroalimentação , Redes Neurais de Computação , Algoritmos , Tempo , Fatores de Tempo , Incerteza
19.
Neural Netw ; 73: 77-85, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26562442

RESUMO

This paper is concerned with the global Mittag-Leffler synchronization for a class of fractional-order neural networks with discontinuous activations (FNNDAs). We give the concept of Filippov solution for FNNDAs in the sense of Caputo's fractional derivation. By using a singular Gronwall inequality and the properties of fractional calculus, the existence of global solution under the framework of Filippov for FNNDAs is proved. Based on the nonsmooth analysis and control theory, some sufficient criteria for the global Mittag-Leffler synchronization of FNNDAs are derived by designing a suitable controller. The proposed results enrich and enhance the previous reports. Finally, one numerical example is given to demonstrate the effectiveness of the theoretical results.


Assuntos
Redes Neurais de Computação , Algoritmos
20.
IEEE Trans Cybern ; 46(10): 2300-2310, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26390507

RESUMO

This paper is concerned with the synchronization problem for a class of switched neural networks (SNNs) with time-varying delays. First, a new crucial lemma which includes and extends the classical exponential stability theorem is constructed. Then by using the lemma, new algebraic criteria of ψ -type synchronization (synchronization with general decay rate) for SNNs are established via the designed nonlinear feedback control. The ψ -type synchronization which is in a general framework is obtained by introducing a ψ -type function. It contains exponential synchronization, polynomial synchronization, and other synchronization as its special cases. The results of this paper are general, and they also complement and extend some previous results. Finally, numerical simulations are carried out to demonstrate the effectiveness of the obtained results.


Assuntos
Retroalimentação , Redes Neurais de Computação , Dinâmica não Linear , Simulação por Computador , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA