Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 12(8)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39209454

RESUMO

BACKGROUND: Immune checkpoint protein V-domain immunoglobulin suppressor of T cell activation (VISTA) controls antitumor immunity and is a valuable target for cancer immunotherapy. Previous mechanistic studies have indicated that VISTA impairs the toll-like receptor (TLR)-mediated activation of myeloid antigen-presenting cells, promoting the expansion of myeloid-derived suppressor cells, and suppressing tumor-reactive cytotoxic T cell function. METHODS: The aim of this study was to develop a dual-action lipid nanoparticle (dual-LNP) coloaded with VISTA-specific siRNA and TLR9 agonist CpG oligonucleotide. We used three murine preclinical tumor models, melanoma YUMM1.7, melanoma B16F10, and colon carcinoma MC38 to assess the functional synergy of the two cargoes of the dual LNP and therapeutic efficacy. RESULTS: The dual-LNP synergistically augmented antitumor immune responses and rejected large established tumors whereas LNPs containing VISTA siRNA or CpG alone were ineffective. In comparison with therapies using the soluble CpG and a VISTA-specific monoclonal antibody, the dual-LNP demonstrated superior therapeutic efficacy yet with reduced systemic inflammatory cytokine production. In three murine models, the dual-LNP treatment achieved a high cure rate. Tumor rejection was associated with influx of immune cells to tumor tissues, augmented dendritic cell activation, production of proinflammatory cytokines, and improved function of cytotoxic T cells. CONCLUSIONS: Our studies show the dual-LNP ensured codelivery of its synergistic cargoes to tumor-infiltrating myeloid cells, leading to simultaneous silencing of VISTA and stimulation of TLR9. As a result, the dual-LNP drove a highly potent antitumor immune response that rejected large aggressive tumors, thus may be a promising therapeutic platform for treating immune-cold tumors.


Assuntos
Antígenos B7 , Nanopartículas , Animais , Camundongos , Feminino , Imunoterapia/métodos , Humanos , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Melanoma Experimental/tratamento farmacológico , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral , Receptor Toll-Like 9/agonistas , Receptor Toll-Like 9/metabolismo
2.
STAR Protoc ; 5(3): 103222, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39088325

RESUMO

Arginase1 (ARG1) is a metabolic enzyme that is highly expressed in tumor-associated myeloid-derived suppressor cells (MDSCs) and causes the dysfunction of tumor-reactive T cells. Here, we present a protocol for detecting ARG1 expression in tumor MDSCs from a murine model of colon cancer using flow cytometry. We describe steps for tumor tissue processing, antibody staining, and data acquisition. We then detail procedures for identifying MDSC subsets and detecting ARG1 expression using a precise gating strategy. For complete details on the use and execution of this protocol, please refer to Zhang et al.1.

3.
Sci Immunol ; 9(95): eadi7418, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758807

RESUMO

Immune checkpoint blockade is a promising approach to activate antitumor immunity and improve the survival of patients with cancer. V-domain immunoglobulin suppressor of T cell activation (VISTA) is an immune checkpoint target; however, the downstream signaling mechanisms are elusive. Here, we identify leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) as a VISTA binding partner, which acts as an inhibitory receptor by engaging VISTA and suppressing T cell receptor signaling pathways. Mice with T cell-specific LRIG1 deletion developed superior antitumor responses because of expansion of tumor-specific cytotoxic T lymphocytes (CTLs) with increased effector function and survival. Sustained tumor control was associated with a reduction of quiescent CTLs (TCF1+ CD62Lhi PD-1low) and a reciprocal increase in progenitor and memory-like CTLs (TCF1+ PD-1+). In patients with melanoma, elevated LRIG1 expression on tumor-infiltrating CD8+ CTLs correlated with resistance to immunotherapies. These results delineate the role of LRIG1 as an inhibitory immune checkpoint receptor and propose a rationale for targeting the VISTA/LRIG1 axis for cancer immunotherapy.


Assuntos
Antígenos B7 , Linfócitos T CD8-Positivos , Glicoproteínas de Membrana , Microambiente Tumoral , Animais , Humanos , Camundongos , Antígenos B7/imunologia , Antígenos B7/genética , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/genética , Proteínas de Membrana , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso , Microambiente Tumoral/imunologia
4.
Cell Rep ; 43(1): 113661, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38175754

RESUMO

Myeloid-derived suppressor cells (MDSCs) impair antitumor immune responses. Identifying regulatory circuits during MDSC development may bring new opportunities for therapeutic interventions. We report that the V-domain suppressor of T cell activation (VISTA) functions as a key enabler of MDSC differentiation. VISTA deficiency reduced STAT3 activation and STAT3-dependent production of polyamines, which causally impaired mitochondrial respiration and MDSC expansion. In both mixed bone marrow (BM) chimera mice and myeloid-specific VISTA conditional knockout mice, VISTA deficiency significantly reduced tumor-associated MDSCs but expanded monocyte-derived dendritic cells (DCs) and enhanced T cell-mediated tumor control. Correlated expression of VISTA and arginase-1 (ARG1), a key enzyme supporting polyamine biosynthesis, was observed in multiple human cancer types. In human endometrial cancer, co-expression of VISTA and ARG1 on tumor-associated myeloid cells is associated with poor survival. Taken together, these findings unveil the VISTA/polyamine axis as a central regulator of MDSC differentiation and warrant therapeutically targeting this axis for cancer immunotherapy.


Assuntos
Células Supressoras Mieloides , Neoplasias , Animais , Humanos , Camundongos , Camundongos Knockout , Células Mieloides/metabolismo , Neoplasias/patologia , Poliaminas/metabolismo , Fator de Transcrição STAT3/metabolismo , Linfócitos T
5.
Front Immunol ; 14: 1264327, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928556

RESUMO

The differentiation, survival, and effector function of tumor-specific CD8+ cytotoxic T cells lie at the center of antitumor immunity. Due to the lack of proper costimulation and the abundant immunosuppressive mechanisms, tumor-specific T cells show a lack of persistence and exhausted and dysfunctional phenotypes. Multiple coinhibitory receptors, such as PD-1, CTLA-4, VISTA, TIGIT, TIM-3, and LAG-3, contribute to dysfunctional CTLs and failed antitumor immunity. These coinhibitory receptors are collectively called immune checkpoint receptors (ICRs). Immune checkpoint inhibitors (ICIs) targeting these ICRs have become the cornerstone for cancer immunotherapy as they have established new clinical paradigms for an expanding range of previously untreatable cancers. Given the nonredundant yet convergent molecular pathways mediated by various ICRs, combinatorial immunotherapies are being tested to bring synergistic benefits to patients. In this review, we summarize the mechanisms of several emerging ICRs, including VISTA, TIGIT, TIM-3, and LAG-3, and the preclinical and clinical data supporting combinatorial strategies to improve existing ICI therapies.


Assuntos
Receptor Celular 2 do Vírus da Hepatite A , Neoplasias , Humanos , Neoplasias/metabolismo , Imunoterapia , Receptores Imunológicos/metabolismo , Linfócitos T Citotóxicos
6.
Cancers (Basel) ; 14(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35053472

RESUMO

Tumor-associated macrophages (TAMs) promote progression of breast cancer and other solid malignancies via immunosuppressive, pro-angiogenic and pro-metastatic effects. Tumor-promoting TAMs tend to express M2-like macrophage markers, including CD163. Histopathological assessments suggest that the density of CD163-positive TAMs within the tumor microenvironment is associated with reduced efficacy of chemotherapy and unfavorable prognosis. However, previous analyses have required research-oriented pathologists to visually enumerate CD163+ TAMs, which is both laborious and subjective and hampers clinical implementation. Objective, operator-independent image analysis methods to quantify TAM-associated information are needed. In addition, since M2-like TAMs exert local effects on cancer cells through direct juxtacrine cell-to-cell interactions, paracrine signaling, and metabolic factors, we hypothesized that spatial metrics of adjacency of M2-like TAMs to breast cancer cells will have further information value. Immunofluorescence histo-cytometry of CD163+ TAMs was performed retrospectively on tumor microarrays of 443 cases of invasive breast cancer from patients who subsequently received adjuvant chemotherapy. An objective and automated algorithm was developed to phenotype CD163+ TAMs and calculate their density within the tumor stroma and derive several spatial metrics of interaction with cancer cells. Shorter progression-free survival was associated with a high density of CD163+ TAMs, shorter median cancer-to-CD163+ nearest neighbor distance, and a high number of either directly adjacent CD163+ TAMs (within juxtacrine proximity <12 µm to cancer cells) or communicating CD163+ TAMs (within paracrine communication distance <250 µm to cancer cells) after multivariable adjustment for clinical and pathological risk factors and correction for optimistic bias due to dichotomization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA