Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Sci ; 331: 111673, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36931564

RESUMO

Plants possess a large family of receptor kinase proteins to mediate cell-to-cell and cell-to-environment communication, and these regulations are essential for plant growth and development as well as resistance to biotic or abiotic stresses. EMS1 is a receptor kinase which involved in tapetum cell fate determination during anther development, while brassinosteroid (BR) receptor, BRI1, controls most aspects of plant growth and development. Although EMS1 and BRI1 are known to regulate independent biological processes, they interact with identical components of the downstream signaling pathways. However, the biological processes other than the tapetum development controlled by the EMS1 signal are not clear. Here, we report that EMS1 signaling-related mutants exhibited an insufficient stamen elongation phenotype, similar to BR signaling mutants. Transgenic expression of BRI1 restored the short filament phenotype of ems1. Conversely, co-expression of EMS1 and TPD1 also restored the short filaments of BRI1 mutants, bri1. Genetic experiments confirmed that EMS1 and BRI1 regulate filament elongation through their downstream transcription factors BES1/BZR1. Molecular analysis suggested that the decrease in BR signaling output in filaments of the ems1 mutant caused deficient filament development. Moreover, in vitro and in vivo experiments proved BES1 interacts with filament-specific transcription factor MYB21. Together, we found that the two receptor-like kinases (RLKs) EMS1 and BRI1 are cooperatively involved in the regulation of filament elongation via the transcription factors BES1/BZR1. These results indicated that the biological processes regulated by EMS1 and BRI1 in plants are both independent and interactive, which provides us with insights into multidimensional molecular control of the RLK pathway.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
New Phytol ; 235(4): 1455-1469, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35570834

RESUMO

Brassinosteroid (BR) signaling has been identified from the ligand BRs sensed by the receptor Brassinosteroid Insensitive 1 (BRI1) to the final activation of Brassinozole Resistant 1/bri1 EMS-Suppressor 1 through a series of transduction events. Extensive studies have been conducted to characterize the role of BR signaling in various biological processes. Our previous study has shown that Excess Microsporocytes 1 (EMS1) and BRI1 control different aspects of plant growth and development via conserved intracellular signaling. Here, we reveal that another receptor, NILR1, can complement the bri1 mutant in the absence of BRs, indicating a pathway that resembles BR signaling activated by NILR1. Genetic analysis confirms the intracellular domains of NILR1, BRI1 and EMS1 have a common signal output. Furthermore, we demonstrate that NILR1 and BRI1 share the coreceptor BRI1 Associated Kinase 1 and substrate BSKs. Notably, the NILR1-mediated downstream pathway is conserved across land plants. In summary, we provide evidence for the signaling cascade of NILR1, suggesting pan-brassinosteroid signaling initiated by a group of distant receptor-ligand pairs in land plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fenômenos Biológicos , Embriófitas , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Brassinosteroides/farmacologia , Embriófitas/metabolismo , Ligantes , Proteínas Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA