RESUMO
Developing nonprecious-metal based catalysts with highly active and stable performance for hydrogen evolution reaction (HER) in neutral media is crucial points for realizing low-carbon economy because their practical use typically suffers from the slow kinetics. Herein, we developed S-doped MoO3nanosheets toward neutral HER, fabricated by a versatile solvothermal and subsequently sulfuration processes. The obtained catalyst exhibits a small overpotential of 106 mV to reach 10 mA cm-2in 1.0 M phosphate buffered saline, overwhelming most of recently reported catalysts. Meantime, it shows no notable deactivation after more than 60 h continuous electrolysis and 50 000 cycling tests. More importantly, the catalyst also can be applied in buffered seawater for electrocatalyzing HER, requiring 262 mV at 10 mA cm-2and maintaining over 60 h. These findings open a new route for designing MoO3-based catalysts for neutral hydrogen production.
RESUMO
Chinese soy sauce aroma liquor (CSSL) is a famous Baijiu. Multiple rounds of fermentation, the characteristic of CSSL processing, contributes to the differences in the quality of the liquor of different rounds. In this study, the grains on cooled, stacked, and fermented stages of 4th to 7th rounds were taken, of which the environmental factors, bacterial diversity, and volatile compounds were comprehensively analyzed. Lactobacillaceae, Bacillaceae, Thermoactinomycetaceae, and Enterobacteriaceae were the top four families, of which Lactobacillaceae dominated the fermented stage of each round. Principal component analysis (PCA) and principal coordinate analysis (PCoA) supported the popular view that the liquors of 3rd to 5th rounds possess the best quality. Lactobacillaceae is an extremely critical bacterium for CSSL fermentation. This study provides comprehensive understanding regarding the dynamic changes in fermented grains during the 4th to 7th rounds, which could help to improve the processing technology of CSSL.
RESUMO
The catalytic activity of counter electrodes (CEs) severely restricts the photovoltaic conversion efficiency of dye-sensitized solar cells. However, electrons trapped by bulk defects greatly reduce the catalytic activity of the CE. In this study, we report a novel In2S3-C-Au hybrid structure designed by simply decorating Au particles on the surface of carbon-coated hierarchical In2S3 flower-like architectures, which could avoid the abovementioned problems. This effect can be attributed to the unique contribution of indium sulfide, carbon, and Au from the hybrid structure, as well as to their synergy. Electrochemical measurements revealed that the hybrid structure possessed high catalytic activity and electrochemical stability for the interconversion of the redox couple I3-/I-. Moreover, this superior performance can be incorporated into the dye-sensitized solar cells system. We used this hybrid structure as a counter electrode by casting it on an FTO substrate to form a film, which displayed better photovoltaic conversion efficiency (8.91%) than the commercial Pt counterpart (7.67%).