Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 13(9)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37763270

RESUMO

Pigeon is an important economic poultry species in many countries. As an altricial bird, its growth and development are largely reliant on pigeon milk produced by the crop tissue in the first week. During the breeding cycle, pigeons undergo a series of behavioral changes. Pigeon milk is generally characterized by having high concentrations of proteins and lipids, and a complicated regulatory network is involved in the milk formation. Hormones, especially prolactin, could promote the proliferation of crop epidermal cells and nutrient accumulation. The expression of target genes associated with these important biological processes in the crop epidermis is affected by non-coding RNAs. Meanwhile, signaling pathways, such as target of rapamycin (TOR), Janus kinase/signal transducer and activator of transcription proteins (JAK/STAT), protein kinase B (Akt), etc., influence the production of crop milk by either enhancing protein synthesis in crop cells or inducing apoptosis of crop epidermal cells. In order to adapt to the different breeding periods, pigeons are physiologically changed in their intestinal morphology and function and liver metabolism. This paper reviews the behaviors and physiological adaptations of pigeon during the breeding cycle, the composition of pigeon crop milk, and the mechanism of its formation, which is important for a better understanding of the physiology of altricial birds and the development of artificial crop milk.

2.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37721785

RESUMO

The purpose of this study was to investigate whether prolactin (PRL) regulates the proliferation of pigeon crop epithelium through the Hippo signaling pathway during the breeding cycle. Twenty-four pairs of adult pigeons were allotted to four groups by different breeding stages, and their crops and serum were sampled. Eighteen pairs of young pigeons were selected and divided into three groups for the injection experiments. The results showed that the serum PRL content and crop epithelial thickness of pigeons increased significantly at day 17 of incubation (I17) and day 1 of chick-rearing (R1). In males, the mRNA levels of yes-associated transcriptional regulator (YAP) and snail family transcriptional repressor 2 (SNAI2) were peaked at I17, and the gene levels of large tumor suppressor kinase 1 (LATS1), serine/threonine kinase 3 (STK3), TEA domain transcription factor 3 (TEAD3), connective tissue growth factor (CTGF), MYC proto-oncogene (c-Myc) and SRY-box transcription factor 2 (SOX2) reached the maximum value at R1. In females, the gene expression of YAP, STK3, TEAD3, and SOX2 reached the greatest level at I17, the expression profile of SAV1, CTGF, and c-Myc were maximized at R1. In males, the protein levels of LATS1 and YAP were maximized at R1 and the CTGF expression was upregulated at I17. In females, LATS1, YAP, and CTGF reached a maximum value at I17, and the expression level of phosphorylated YAP was minimized at I17 in males and females. Subcutaneous injection of prolactin (injected for 6 d, 10 µg per kg body weight every day) on the left crop of pigeons can promote the proliferation of crop epithelium by increasing the CTGF level and reducing the phosphorylation level of YAP. YAP-TEAD inhibitor verteporfin (injection for 6 d, 2.5 mg per kg body weight every day) can inhibit the proliferation of crop epithelium induced by prolactin by inhibiting YAP and CTGF expression. In conclusion, PRL can participate in crop cell proliferation of pigeons by promoting the expression of YAP and CTGF in Hippo pathway.


This study evaluated whether prolactin (PRL) regulates the proliferation of pigeon crops through Hippo signaling pathway during the breeding cycle. Twenty-four pairs of adult pigeons were allotted to four groups by different breeding stages, and their crops and serum were sampled. Eighteen pairs of young pigeons were selected and divided into three groups for the injection experiments. The crop epithelial thickness and serum PRL content of pigeons increased significantly at day 17 of incubation (I17) and day 1 of chick-rearing (R1). In males and females, the mRNA and protein levels of yes-associated transcriptional regulator (YAP) reached the maximum value at R1 and I17, respectively, and phosphorylation level of YAP were minimized at I17. Subcutaneous injection of prolactin on pigeon crops can promote the proliferation of crop epithelium by increasing the connective tissue growth factor (CTGF) level and reducing the phosphorylation level of YAP. YAP-TEAD inhibitor verteporfin can inhibit the proliferation of crop epithelium induced by prolactin by inhibiting YAP and CTGF expression. In conclusion, PRL can participate in crop cell proliferation of pigeons by promoting the expression of YAP and CTGF in Hippo pathway.


Assuntos
Columbidae , Via de Sinalização Hippo , Masculino , Feminino , Animais , Columbidae/fisiologia , Prolactina/farmacologia , Melhoramento Vegetal , Proliferação de Células , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Peso Corporal
3.
Life (Basel) ; 13(3)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36984003

RESUMO

Effects of different feeding strategies on meat quality and intestinal development in pigeon squabs were investigated. 120 pairs of pigeons with two squabs each were assigned to five groups (four free-choice feeding systems and one complete feeding system): T1 (corn, pea, wheat, and pelleted feed), T2 (corn, wheat, and pelleted feed), T3 (corn, pea, and pelleted feed), T4 (corn and pelleted feed), and T5 (complete pelleted feed). Compared with T5, the diet in T4 made the breast meat redder and more yellow (p < 0.05). T2 and T4 resulted in an enhanced total superoxide dismutase activity of meat. Breast muscle in T1 and T2 was determined to have higher contents of nonessential amino acids, glycine, alanine, and glutamic acid (p < 0.05). The contents of the essential amino acids, lysine, threonine, valine, histidine, and arginine were also higher in T1 (p < 0.05). Villus height, surface area, and alkaline phosphatase activity of the duodenum and jejunum in T2 were the highest among the treatments (p < 0.05). In conclusion, free-choice feeding system can improve the meat quality and intestinal development of pigeon squabs, but which combination method of whole grains to use in the production depends on the feeding purpose.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA