Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35350897

RESUMO

Radermachera hainanensis Merr. plants are native in south-central and southeast of China. Plants produce large flowers, and are widely cultivated in China as ornamentals. In April 2020, R. hainanensis Merr. plants grown in Cixi Lvpin Garden (30°26'54″N, 121°25'48″E), Zhejiang Province, were found to have many black circular necrotic lesions. In the early infection stage, the lesions appeared in lower leaves as small black circular spots which developed later into large spots (11 to 38 mm diameter) with grey centers and chlorotic edges. Ultimately, the spots spread and merged. Moreover, infected leaves showed premature leaf fall. Disease intensity reached approximately 20% of plants in the affected field (0.5 ha). After effective chemical control, this disease did not spread to other healthy plants in the same garden. To identify the causative pathogen associated with the disease, ten symptomatic leaves were collected from ten different plants. Leaf tissues were cut from the lesion margins and sterilized as follows: surface sterilized with 75% ethanol for 30 seconds and washed three times in sterile distilled water. The leaf tissues were then dipped into 10% sodium hypochlorite for 3-4 minutes, then washed three times in distilled water and dried on a sterile filter paper. After drying, the surface-sterilized leaf discs were cut to small pieces (3×3 mm) and transferred to potato dextrose agar (PDA) plates and incubated at 28°C for 2 to 3 days under 12 h photoperiod. A total of 15 isolates were obtained from the affected leaves, and all the isolates displayed the same colony characteristics. Then, three single-spore isolates were randomly selected (F2, F5 and F8) for further study. The fungal colonies were dark green with a granular surface, and irregular white edges, later turning black. Conidia were one-celled, oval, and narrow at the end with a single apical end, measuring from 7.8 to 11.1 × 4.6 to 5.9 µm (av. 9.5 × 5.2 µm, n=50). These morphological characteristics were consistent with the description of Phyllosticta capitalensis (Wikee et al. 2013; Guarnaccia et al. 2017). The identity of three representative isolates were confirmed by a multilocus approach. The DNA of three isolates were extracted and partial sequences of ribosomal internal transcribed spacer (ITS), actin (ACT), and translation elongation factor 1-alpha (TEF1-α) were amplified and sequenced as previously described (White et al. 1990; O'Donnell et al. 1998; Carbone & Kohn et al. 1999). The three selected isolates shared 100% identical sequence of ITS, ACT and TEF1-α. Then representative isolate F8 was selected for further study. BLAST analysis in GenBank showed that the obtained sequence of ITS (MZ317550) had 99% identity to P. elongata isolate eSX25240811. Other two sequences of ACT (MZ326837) and TEF1-α(MZ326839) showed 99% and 98% identity to P. capitalensis isolate YLWB01, respectively. The phylogenetic trees were constructed by Bootstrap method with 1000 replications using Maximum Likelihood model implemented in the MEGA 7. Results showed that the isolate F8 clustered with P. capitalensis with 100% bootstrap support. Pathogenicity of strain F8 was tested by Koch's postulates. A pathogenicity test was performed in a greenhouse with 80% relative humidity at 28°C. 20 healthy plants were sprayed with a 1×106 conidia ml-1 suspension (three leaves from each individual plants) and another 20 healthy plants were sprayed with sterile distilled water (three leaves from each individual plant) as control. Conidia was obtained from PDA plates after 7 days of incubation in the biochemical incubator at 28°C and concentration was counted in hemacytometer. After 15 days, disease symptoms were observed on all inoculated leaves, whereas the control plants remained asymptomatic. After that, P. capitalensis was re-isolated only from the infected leaves and identified by morphological and sequence analyses. Early identification of P. capitalensis as a causal agent for black spot is crucial to employ effective disease management strategies to control disease in the field. P. capitalensis has been reported on many crops in China (Cheng et al. 2019; Tang et al. 2020; Liao et al. 2020). However, to our knowledge, this is the first report of black spot disease caused by P. capitalensis on Radermachera hainanensis Merr. in China.

2.
Clin Microbiol Infect ; 27(7): 1000-1006, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33421578

RESUMO

OBJECTIVES: Delay in diagnosis of tuberculosis (TB) is an important but under-appreciated problem. Our study aimed to analyse the patient pathway and possible risk factors of long diagnostic delay (LDD). METHODS: We enrolled 400 new bacteriologically diagnosed patients with pulmonary TB from 20 hospitals across China. LDD was defined as an interval between the initial care visit and the confirmation of diagnosis exceeding 14 days. Its potential risk factors were investigated by multivariate logistic regression and multilevel logistic regression. Hospitals in China were classified by increasing size, from level 0 to level 3. TB laboratory equipment in hospitals was also evaluated. RESULTS: The median diagnostic delay was 20 days (IQR: 7-72 days), and 229 of 400 patients (57.3%, 95%CI 52.4-62.1) had LDD; 15% of participants were diagnosed at the initial care visit. Compared to level 0 facilities, choosing level 2 (OR 0.27, 95%CI 0.12-0.62, p 0.002) and level 3 facilities (OR 0.34, 95%CI 0.14-0.84, p 0.019) for the initial care visit was independently associated with shorter LDD. Equipping with smear, culture, and Xpert at initial care visit simultaneously also helped to avoid LDD (OR 0.28, 95%CI 0.09-0.82, p 0.020). The multilevel logistic regression yielded similar results. Availability of smear, culture, and Xpert was lower in level 0-1 facilities than in level 2-3 facilities (p < 0.001, respectively). CONCLUSIONS: Most patients failed to be diagnosed at the initial care visit. Patients who went to low-level facilities initially had a higher risk of LDD. Improvement of TB laboratory equipment, especially at low-level facilities, is urgently needed.


Assuntos
Mycobacterium tuberculosis/isolamento & purificação , Tuberculose/diagnóstico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Técnicas Bacteriológicas/instrumentação , Técnicas Bacteriológicas/estatística & dados numéricos , China/epidemiologia , Diagnóstico Tardio , Feminino , Hospitais , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Tuberculose/epidemiologia , Adulto Jovem
3.
Plant Dis ; 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33074074

RESUMO

Zinnia elegans (syn. Zinnia violacea), known as common zinnia, is one of the most spectacular ornamental plants in the family Asteraceae. Zinnia plants are widely cultivated in China for their impressive range in flower colours and profuse bloom over a long period. In April 2019, Zinnia plants grown in Ningbo Botanical Garden (29°56'57″N, 121°36'20″E) were found to have many circular necrotic lesions. In the early infection stage, the lesions appeared as small circular specks which developed later into large spots (15 to 32 mm diameter). Typical symptoms appeared to be grayish white centers with a chlorotic edges and disease incidence reached approximately 80% of plants in the affected field. Moreover, the growth of Zinnia plants was seriously affected by the disease. To identify the causative pathogen associated with the disease, 10 symptomatic leaves were collected from ten different Zinnia plants. Leaf tissues were cut from the lesion margins, surface sterilized with 75% ethanol for 30 seconds and rinsed three times in sterile distilled water. The leaf tissues were then dipped into 10% sodium hypochlorite for 2-3 minutes, washed three times in distilled water and dried on a sterile filter paper. After drying, the surface-sterilized leaf discs were transferred to potato dextrose agar (PDA) plates and incubated at 28°C for 2 to 3 days under the 12 h photoperiod. A total of ten pure fungal isolates were obtained and all the isolates displayed the same colony structure. Afterwards, three pure strains were randomly selected (F1, F3 and F5) for further study. The fungal colonies showed gray to brownish aerial mycelia with pink-colored masses of conidia. Conidia were one-celled, hyaline, cylindrical to subcylindrical, spindle-shaped with obtuse ends, measuring from 15.6 to 17.3 × 4.6 to 5.1 µm with both ends rounded. These morphological characteristics were consistent with the description of Colletotrichum gloeosporioides complex (Weir et al. 2012). The identity of a representative isolate, F3, was confirmed by a multilocus approach. Genomic DAN of isolate F3 was extracted and partial sequences of actin (ACT), chitin synthase (CHS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal internal transcribed spacer (ITS), manganese-superoxide dismutase (SOD2) , glutamine synthatase (GS), beta-tubulin (TUB2) and calmodulin (CAL) were amplified and sequenced as previously described (Weir et al. 2012). These nucleotide sequences were deposited in GenBank (accession MN972436 to MN972440, and MT266559 to MT266561; all sequences in FASTA format are shown (Supplementary S1). BLAST analysis of ITS, ACT, CHS, GAPDH and GS sequences from the F3 isolate revealed similarity to C. gloeosporioides voucher strain ZH01 with 100%, 100%,99%, 99% and 99% identity, respectively. SOD, TUB2 and CAL sequences showed similarity to C. siamense with 100%, 100% and 100% identity, respectively. The phylogenetic trees were constructed by Maximum Likelihood method (ML) using JTT model implemented in the MEGA 7. Results inferred from the concatenated sequences (ACT, CHS, GAPDH, ITS, SOD, GS, TUB2 and CAL) placed the isolate F3 within the C. siamense cluster (Supplementary S2). To confirm pathogenicity of the fungus, Koch's postulates were conducted by spraying 20 Zinnia plants (60-day-old) with a 1 × 106 conidia/ml suspension. Plants were maintained in the growth chamber at 25°C and 85% relative humidity. After 10 to 15 days, symptoms were observed on all inoculated leaves and resembled those observed in the field, whereas the control plants remained asymptomatic. Here, C. siamense was isolated only from the infected Zinnia leaves and identified by morphological and gene sequencing analyses. C. siamense has been reported in many crops in China (Yang et al. 2019; Chen et al. 2019; Wang et al. 2019). However, to our knowledge, this is the first report of anthracnose caused by C. siamense on Zinnia elegans in China. References Chen, X., Wang, T., Guo, H., Zhu, P. K., and Xu, L. 2019. First report of anthracnose of Camellia sasanqua caused by Colletotrichum siamense in China. Plant Dis. 103:1423-1423. Wang, Y., Qin, H. Y., Liu, Y. X., Fan, S. T., Sun, D., Yang, Y. M., Li, C. Y., and Ai, J. 2019. First report of anthracnose caused by Colletotrichum siamense on Actinidia arguta in China. Plant Dis. 103:372-373. Weir, B. S., Johnston, P. R., and Damm, U. 2012. The Colletotrichum gloeosporioides species complex. Stud. Mycol. 73: 115-180. Yang, S., Wang, H. X., Yi, Y. J., and Tan, L. L. 2019. First report that Colletotrichum siamense causes leaf spots on Camellia japonica in China. Plant Dis. 103:2127-2127.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA