Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(7)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39061833

RESUMO

Gastrointestinal (GI) afflictions are prevalent among the feline population, wherein the intricacies of the gut microbiome exert a profound influence on their overall health. Alterations within this microbial consortium can precipitate a cascade of physiological changes, notably in immune function and antioxidant capacity. This research investigated the impact of Bifidobacterium lactis (B. lactis) and Lactobacillus plantarum (L. plantarum) on cats' GI health, exploring the effects of probiotic supplementation on the intestinal ecosystem using 16S rRNA gene sequencing. The findings demonstrated a significant improvement in gut barrier function by reducing plasma concentrations of D-lactate (D-LA) by 30.38% and diamine oxidase (DAO) by 22.68%, while increasing the population of beneficial bacteria such as Lactobacillus. There was a notable 25% increase in immunoglobulin A (IgA) levels, evidenced by increases of 19.13% in catalase (CAT), 23.94% in superoxide dismutase (SOD), and 21.81% in glutathione peroxidase (GSH-Px). Further analysis revealed positive correlations between Lactobacillus abundance and IgA, CAT, and total antioxidant capacity (T-AOC) levels. These correlations indicate that B. lactis and L. plantarum enhance feline immune and antioxidant functions by increasing the abundance of beneficial Lactobacillus in the GI tract. These findings provide a foundation for probiotic interventions aimed at enhancing health and disease resistance in feline populations.

2.
Animals (Basel) ; 14(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38998061

RESUMO

Immune deficiency is a prevalent issue among kittens, severely threatening their health and development by increasing susceptibility to infections and diseases. This study investigates the effects of dietary supplements containing lactoferrin and Lactobacillus plantarum (L. plantarum) on the immune function, intestinal health, and microbiota composition of kittens. The results demonstrate that these supplements significantly enhance immune responses, with immunoglobulin A (IgA) levels increasing by 14.9% and IgG levels by 14.2%. Additionally, there was a notable 28.7% increase in catalase activity, indicating a reduction in oxidative stress. Gastrointestinal (GI) health improved markedly, evidenced by increased populations of beneficial bacteria such as Lactobacillus, which rose from 4.13% to 79.03% over the study period. The DNC group also showed significant reductions in pro-inflammatory cytokines, including decreases of 13.94% in IL-2, 26.46% in TNF-α, and 19.45% in IFN-γ levels. Furthermore, improvements in physical conditions were observed, including enhanced coat condition and mental status. These findings underline the potential of lactoferrin and L. plantarum as effective dietary interventions to improve kitten health, thereby reducing dependency on antibiotics and mitigating associated risks. This research provides a scientific foundation for optimizing nutritional management practices to enhance the overall vitality of kittens during their critical growth phases.

3.
Front Microbiol ; 13: 1037257, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532422

RESUMO

Chronic kidney disease (CKD) is associated with gut microbiome dysbiosis, but the role of intestinal flora in CKD treatment remains to be elucidated. Fecal microbiota transplantation (FMT) can be utilized to re-establish healthy gut microbiota for a variety of diseases, which offers new insight for treating CKD. First, 5/6 nephrectomy rats (Donor CKD) and sham rats (Donor Sham) were used as donors for FMT, and fecal metagenome were analyzed to explore potential therapeutic targets. Then, to assess the effect of FMT on CKD, sterilized 1/2 nephrectomy rats were transplanted with fecal microbiota from Donor sham (CKD/Sham) or Donor CKD (CKD/CKD) rats, and 1/2 nephrectomy rats without FMT (CKD) or no nephrectomy (Sham) were used as model control or normal control. Results showed that Bacteroides uniformis and Anaerotruncus sp. 1XD22-93 were enriched in Donor CKD, while Lactobacillus johnsonii and Lactobacillus intestinalis were reduced. In addition, the increased abundance of microbial functions included tryptophan metabolism and lysine degradation contributing to the accumulation of protein-bound uremic toxins (PBUTs) in Donor CKD. Genome analysis indicated that FMT successfully differentiated groups of gut microbes and altered specific gut microbiota after 1 week of treatment, with Bacteroides uniformis and Anaerotruncus sp. 1XD22-93 increasing in CKD/CKD group as well as Lactobacillus johnsonii and Lactobacillus intestinalis being improved in CKD/Sham group. In comparison to CKD group, substantial PBUT buildup and renal damage were observed in CKD/CKD. Interestingly, compared to CKD or CKD/CKD group, tryptophan metabolism and lysine degradation were efficiently suppressed in CKD/Sham group, while lysine biosynthesis was promoted. Therefore, FMT considerably reduced PBUTs accumulation. After FMT, PBUTs and renal function in CKD/Sham rats remained the same as in Sham group throughout the experimental period. In summary, FMT could delay the malignant development of CKD by modifying microbial amino acid metabolism through altering the microenvironment of intestinal flora, thereby providing a novel potential approach for treating CKD.

4.
Nutrients ; 14(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35956351

RESUMO

Increasing hepcidin expression is a vital factor in iron homeostasis imbalance among patients with chronic kidney disease (CKD). Recent studies have elucidated that abnormal serum steroid levels might cause the elevation of hepcidin. Glycochenodeoxycholate (GCDCA), a steroid, is significantly elevated in patients with CKD. However, the correlation between GCDCA and hepcidin has not been elucidated. Decreased serum iron levels and increased hepcidin levels were both detected in patients with CKD in this study. Additionally, the concentrations of GCDCA in nephropathy patients were found to be higher than those in healthy subjects. HepG2 cells were used to investigate the effect of GCDCA on hepcidin in vitro. The results showed that hepcidin expression increased by nearly two-fold against control under 200 µM GCDCA treatment. The phosphorylation of SMAD1/5/8 increased remarkably, while STAT3 and CREBH remained unchanged. GCDCA triggered the expression of farnesoid X receptor (FXR), followed with the transcription and expression of both BMP6 and ALK3 (upward regulators of SMAD1/5/8). Thus, GCDCA is a potential regulator for hepcidin, which possibly acts by triggering FXR and the BMP6/ALK3-SMAD signaling pathway. Furthermore, 40 C57/BL6 mice were treated with 100 mg/kg/d, 200 mg/kg/d, and 300 mg/kg/d GCDCA to investigate its effect on hepcidin in vivo. The serum level of hepcidin increased in mice treated with 200 mg/kg/d and 300 mg/kg/d GCDCA, while hemoglobin and serum iron levels decreased. Similarly, the FXR-mediated SMAD signaling pathway was also responsible for activating hepcidin in liver. Overall, it was concluded that GCDCA could induce the expression of hepcidin and reduce serum iron level, in which FXR activation-related SMAD signaling was the main target for GCDCA. Thus, abnormal GCDCA level indicates a potential risk of iron homeostasis imbalance.


Assuntos
Hepcidinas , Insuficiência Renal Crônica , Animais , Ácido Glicoquenodesoxicólico , Hepcidinas/genética , Hepcidinas/metabolismo , Homeostase , Humanos , Ferro , Camundongos , Regulação para Cima
5.
Antioxidants (Basel) ; 9(9)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854194

RESUMO

Chronic kidney disease (CKD) is characterized by the accumulation of protein-bound uremic toxins (PBUTs), which play a pathophysiological role in renal fibrosis (a common pathological process resulting in CKD progression). Accumulation of the PBUT hippuric acid (HA) is positively correlated with disease progression in CKD patients, suggesting that HA may promote renal fibrosis. Oxidative stress is the most important factor affecting PBUTs nephrotoxicity. Herein, we assessed the ability of HA to promote kidney fibrosis by disrupting redox homeostasis. In HK-2 cells, HA increased fibrosis-related gene expression, extracellular matrix imbalance, and oxidative stress. Additionally, reactive oxygen species (ROS)-mediated TGFß/SMAD signaling contributed to HA-induced fibrotic responses. HA disrupted antioxidant networks by decreasing the levels of nuclear factor erythroid 2-related factor 2 (NRF2), leading to ROS accumulation and fibrotic responses, as evidenced by NRF2 activation and knockdown. Moreover, NRF2 levels were reduced by NRF2 ubiquitination, which was regulated via increased interactions of Kelch-like ECH-associated protein 1 with Cullin 3 and NRF2. Finally, renal fibrosis and redox imbalance promoted by HA were confirmed in rats. Importantly, sulforaphane (NRF2 activator) reversed HA-promoted renal fibrosis. Thus, HA promotes renal fibrosis in CKD by disrupting NRF2-driven antioxidant system, indicating that NRF2 is a potential therapeutic target for CKD.

6.
Gut ; 69(12): 2131-2142, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32241904

RESUMO

OBJECTIVE: Patients with renal failure suffer from symptoms caused by uraemic toxins, possibly of gut microbial origin, as deduced from studies in animals. The aim of the study is to characterise relationships between the intestinal microbiome composition, uraemic toxins and renal failure symptoms in human end-stage renal disease (ESRD). DESIGN: Characterisation of gut microbiome, serum and faecal metabolome and human phenotypes in a cohort of 223 patients with ESRD and 69 healthy controls. Multidimensional data integration to reveal links between these datasets and the use of chronic kidney disease (CKD) rodent models to test the effects of intestinal microbiome on toxin accumulation and disease severity. RESULTS: A group of microbial species enriched in ESRD correlates tightly to patient clinical variables and encode functions involved in toxin and secondary bile acids synthesis; the relative abundance of the microbial functions correlates with the serum or faecal concentrations of these metabolites. Microbiota from patients transplanted to renal injured germ-free mice or antibiotic-treated rats induce higher production of serum uraemic toxins and aggravated renal fibrosis and oxidative stress more than microbiota from controls. Two of the species, Eggerthella lenta and Fusobacterium nucleatum, increase uraemic toxins production and promote renal disease development in a CKD rat model. A probiotic Bifidobacterium animalis decreases abundance of these species, reduces levels of toxins and the severity of the disease in rats. CONCLUSION: Aberrant gut microbiota in patients with ESRD sculpts a detrimental metabolome aggravating clinical outcomes, suggesting that the gut microbiota will be a promising target for diminishing uraemic toxicity in those patients. TRIAL REGISTRATION NUMBER: This study was registered at ClinicalTrials.gov (NCT03010696).


Assuntos
Microbioma Gastrointestinal , Falência Renal Crônica/metabolismo , Metaboloma , Animais , Ácidos e Sais Biliares/metabolismo , Estudos de Casos e Controles , Modelos Animais de Doenças , Fezes/microbiologia , Feminino , Humanos , Masculino , Camundongos , Estresse Oxidativo , Ratos , Toxinas Biológicas/metabolismo , Uremia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA